INSTRUCTOR'S LESSON PLAN

SUBJECT: The process of	natural gas extraction from the Ma	arcellus shale	INSTRUCTOR:
TITLE OF LESSON: Extraction	ng Natural Gas from the Marcellus	Shale	DATE OF INSTRUCTION:
TIME PERIOD (TOTAL) <45 min.>	TYPE OF LESSON: Lecture	PLACE:	
TRAINING AIDS: <starts h<="" td=""><td>nere></td><th></th><th></th></starts>	nere>		
OBJECTIVE(S): Provide a reservoirs such as the N		to explore, develop,	and produce natural gas from shale gas
	aherty, ES 8 (2002); Hyne, Nontec	,	Pennsylvania (2010); Carter, OFOG 07-01.1 oleum Geology, Exploration, Drilling, and
STUDENT'S REFERENCE:	·	•	

TIME	LESSON OUTLINE	AID CUES
	<u>INTRODUCTION</u>	
00:00	a. Production of shale gas in the Appalachian basin has its roots in NY:	
	William Hart hand-dug a well 27 ft deep in 1821 to produce natural gas	
	from Devonian shale in Fredonia, Chautauqua County; subsequently, other	
	shallow gas wells were dug along the Lake Erie shoreline from Buffalo, NY	
	to Sandusky, OH.	
	b. In 1859, "Colonel" Edwin L. Drake ushered in the modern petroleum	
	industry by applying salt-well drilling tools and techniques to complete a	
	69.5 ft deep oil well in Titusville, Venango County, PA; from this point on,	
	oil and gas wells were drilled, rather than dug.	
	c. PA has a rich history of oil and gas drilling; for example, operators	
	have known for decades that much gas exists in the Marcellus Fm; they	
	would encounter it when drilling for deeper Devonian-age targets like the	
	Oriskany Sandstone. In addition, oil and gas wells have been drilled	
	directionally and hydraulically fractured for the past 50-70 years, with much	
	of the technology being developed right in PA's backyard.	
	d. The PA Geological Survey participated in the Eastern Gas Shales	
	Project (EGSP) of the late 1970s; major findings of the U.S. DOE-funded	
	work were that (1) Devonian organic-rich shales could be important gas	
	reservoirs if better technologies for inducing/enhancing fractures in the	
	shales were developed; and (2) the Marcellus Fm could not effectively	
	compete with conventional gas reservoirs (e.g., Oriskany Sandstone) until	
	drilling and hydraulic fracturing technologies advanced and the price of	
	natural gas rose to a much higher level.	
	e. The Bureau of Forestry's Oil & Gas Leasing Program began in 1947.	
	Since that time, natural gas exploration and development has been	
	occurring almost continuously. These activities have provided the	
	necessary revenues to allow DCNR to continually invest in stewardship,	
	conservation and recreation (via the Oil and Gas Lease Fund – note at	

TIME	LESSON OUTLINE	AID CUES
	f. What has changed since then? Natural gas demand and prices have risen, drilling and hydraulic fracturing technologies have been developed/improved in other places and basins (e.g., the Barnett and Haynesville shales), and there is more acceptance/an increased comfort level of exploring/investing in unconventional gas reservoirs, that is, reservoirs where the source rock and reservoir rock are one and the same. g. Unconventional reservoir, defined – source rock elements remain in the formation; the reservoir and seal materials are noticeably different than what we see in conventional (e.g., sandstone and carbonate) reservoir systems; reservoir porosities and permeabilities are very low, meaning it is can be notably difficult to get the petroleum hydrocarbons out	
	<u>DEVELOPMENT</u>	
10:00	1. The current Marcellus play began in 2004 with the completion of the Renz #1 in Washington County, PA, by Range Resources, LLC. In 2008, the first well specifically targeting the Marcellus Shale was drilled on the Sproul State Forest in Clinton County. Three steps in the "lifetime" of a natural gas play include: prospecting, exploration, and development .	
	a. Prospecting – desktop studies show potential in an area or for a formation b. Exploration – remote sensing (seismic surveys), exploratory wells (typically vertical), borehole geophysics, etc. c. Development – petroleum has already been discovered, so infill drilling takes place d. Different companies are at different stages in this process with respect to the current Marcellus play (some claim exploratory, some development)	
12:00	 2. Marcellus Drilling Process a. Site selection – geology and topography are favorable b. Site preparation – clearing trees, leveling the land surface, building a well pad/access road with rock and stone c. Spudding – when drilling starts d. Types of drilling 1) Vertical – straight well bore / up and down 2) Deviated – angled well bore 3) Horizontal – a specific type of deviated boring where the well bore has 90 degree turn / up and down, then side to side e. Drilling fluids 1) air / foam – most often used in Marcellus development when drilling the vertical portion of the well 2) drilling mud (water-based, oil-based) – most often used in Marcellus development when drilling the non-vertical portion of the well (e.g., during horizontal drilling) f. Casing – steel pipe placed in the ground to protect the formation and 	

TIME	LESSON OUTLINE	AID CUES
	associated water from the fluids and gases moving through the pipe	
	g. Cementing – cement is pumped down the casing and forced up	
	along the outside of the casing to further isolate the formation/waters from	
	any produced fluid or gas	
	h. <i>Water usage</i>	
	1) Drilling process – requires ~100,000 gal	
	2) Completion process – requires 2-5 million gal, depending on	
	data source	
	 a) freshwater – water taken from an approved source 	
	(stream, municipal water authority, etc.) that is used in the	
	completion process described below	
	b) "gray water" – water that has been previously used in	
	another well completion that is treated/reconditioned for	
	another use	
07.00	O Margallus Wall Campulations	
27:00	Marcellus Well Completions a. Perforations – the casing and cement is perforated ("perfed" or	
	"shot") at known distances and angles to allow water and sand to flow from	
	the well bore into the rock, and gas to flow out of the rock into the well bore	
	b. <i>Hydraulic fracturing</i> – better known as "fracing" (pronounced	
	fracking); water is combined with sand and other, mostly food-grade,	
	additives and injected underground to break the rock up and create	
	fractures, or cracks. Sand carried by the frac fluid will be deposited in the	
	newly formed cracks to prop them open and allow gas to flow from the	
	reservoir rock into the well bore.	
	c. Flowback and well testing	
	Flowback – the fluid that was injected into the well during	
	completion is allowed to flow back to the wellhead (the injected	
	sand remains in the rock fractures). This fluid is contained in the	
	casing until it reaches the surface, at which time it is piped to	
	storage containers for processing and/or disposal. Flowback	
	water recovery estimates vary greatly, from as little as 9% to	
	upwards of 40%, depending on data source.	
	2) Well testing	
	a) Flaring – a well must be flared when a pipeline is not	
	available. As gas begins returning to the surface with the	
	fluid, the substances are separated – the fluid is piped to	
	storage containers and the gas is piped to a flare stack where it is lit and allowed to burn under control. Gas is	
	burned in this manner for safety reasons (i.e., methane	
	can be highly flammable) as well as to measure (and	
	estimate) the volume of gas a well can produce. Flaring	
	may last up to several weeks. Eventually, if the estimates	
	determine a well will be a good producer, a pipeline is built	
	to this well.	
	b) Flow Testing – a well can be flow-tested when a pipeline is	
	available. In this case, gas is sent through a dehydrator to	
	ensure there is no water vapor in the gas stream and then	

TIME	LESSON OUTLINE	AID CUES
	moved directly into a pipeline where it can be marketed	
	and sold. The gas volume and other traits are continually	
	measured during flow testing. After a while, the well will be	
	shut-in and properly conditioned for permanent production.	
35:00	4. Water Management a. Sourcing – a water plan must be approved by PA DEP and the	
	appropriate river basin commission (where applicable) before a well permit	
	is issued. Before a water use is approved, several analyses are performed	
	to ensure that water is being used in an environmentally safe manner.	
	Water may be transported by truck, pipeline, or a combination of both.	
	b. Usage/handling – water is used during every phase of the gas shale	
	drilling and completion process. Water is stored in centralized	
	locations (i.e., tanks, lakes, pits) until it is needed. Water is often stored away from the well site thereby requiring that it be moved on-	
	site; more and more, water is being piped to the well site in lieu of	
	trucking. Once on location, the water necessary for completion	
	operations	
	c. Disposal – any flowback water/fluid that returns to the surface must	
	be properly disposed. Fluid is captured at the wellhead and stored in	
	a tank until:	
	a) Recycle/reuse – fluid is treated and reconditioned for the	
	purpose of reusing in future well completions. Recycling	
	operations can occur on the well pad (mobile units) or at a recycling center (requires trucking of fluid). Several	
	methods of treatment can be used to recycle this water.	
	Once the recycling process is complete, the water is	
	transported to the next operation site where it can be used	
	again. The Susquehanna River Basin Commission	
	(SRBC) estimates that wells permitted under their	
	jurisdiction may reuse as much as 400,000 gal of flowback	
	water from well to well.	
	b) Permanent disposal – fluid is taken to an approved	
	treatment facility where it is processed to remove any chemicals, dissolved solids, or high concentrations of	
	naturally occurring elements (mostly chlorides). Prior to	
	being released back into a watercourse, the treated waters	
	must meet DEP requirements and are to be released in a	
	way that does not adversely impact aquatic environments	
	or downstream users.	
40.00	OUEOTIONO & COMMENTO	
40:00	QUESTIONS & COMMENTS	
	SUMMARY	
43:00	The petroleum industry has a rich history in the Appalachian basin	

TIME	LESSON OUTLINE	AID CUES
TIME	 in general and in Pennsylvania in particular. We are the home of the modern petroleum industry, and have known for some time that Devonian-age shales, like the Marcellus Formation, yield lots of gas. Technological advances and mind shifts have placed much attention on the Marcellus shale in our backyard and have made it the popular play that it is today. 2. The PA Geological Survey has been involved with shale gas research since the late 1970s, at which time they participated in the Eastern Gas Shales Project, which has laid the foundation for much of the basin-wide geologic mapping and reservoir research conducted today. 3. The Bureau of Forestry has been managing natural gas development on State Forest land since 1947; the economic benefits from these activities have been invested in stewardship, conservation, and recreation. 4. The Marcellus drilling process is conventional in many regards; however, what is unique to this current play is the way operators drill horizontally, use millions of gallons of water/fluids to perforate and stimulate the wells, complete several wells on a given pad, and produce millions of cubic feet of gas per day. 5. Water management has become a key issue with respect to the exploration and development of the Marcellus shale as a natural gas reservoir. Technological advances, happening monthly, are 	AID CUES
	changing the way that operators procure, transport, use, reuse, and eventually dispose spent frac waters.	