Sustainable Hydrology: Integrating Stormwater Management into the Landscape

Shirley E. Clark, Ph.D., P.E., D.WRE Penn State Harrisburg Dr. Robert Pitt, Ph.D., P.E., BCEE, D. WRE University of Alabama

> Co-Authors: Dr. Katherine Baker Daniel P. Treese J. Bradley Mikula Christina Y.S. Siu

Moving Stormwater Control Into the Watershed

Multiple names for a similar goal/design process:

- Low Impact Development (LID)
- Conservation Design
- Water Sensitive Urban Design (WSUDs)
- Sustainable Urban Drainage Systems (SUDS)
- Distributed Runoff Controls (DRC)
- How can we modify our development designs to encourage stormwater treatment at its sources instead of at the watershed outlet?

Improved Understanding of Runoff Flows and Volumes as a Guide for Stormwater Management

- Usually a simple relationship between rain depth and runoff depth.
- Changes in rain depth affect the relative contributions of land area runoff and pollutant mass discharges:
 - Directly connected impervious areas contribute most flow during relatively small rains
 - Disturbed urban soil areas ("pervious" areas) may dominate during larger rains rains

Design Objectives

• < 0.5 in runoff

- Most Events (Number of Storms)
- Little of Annual Runoff
 Volume and Pollutant Mass
 Discharge
- Probable Little Receiving Water Effects
- Problem: Pollutant Concentrations Likely Exceed Regulations (bacteria, total recoverable metals) for each event

- Water Quality Storms
 - Totally capture runoff
 - Reuse runoff on-site (irrigation?) or infiltrate runoff in upland areas (unless groundwater contamination potential exists)

Design Objectives (cont.)

- 0.5 2 inches
 - Majority of Annual Runoff Volume and Pollutant Discharges
 - Occurs Approximately Every Two Weeks
 - Problems:
 - Produce Moderate to High Flows
 - Produce Frequent High Pollutant Loadings

- Pollutant Mass Loading Storms
 - Totally capture up to 0.5 in (12 mm) rains and infiltrate on site. Do not allow in drainage system.
 - Investigate treatment for runoff not captured.

Design Objectives (cont.)

- 2 4 inches
 - Current Design Storms
 - Establishes Energy Gradient of Streams
 - Occurs Approximately Every Few Months (once to twice a year)
 - Problems:
 - Unstable Streambanks
 - Habitat Destruction from Damaging Flows

- Drainage Design Storms
 - Remove first portion of events (0.5 in) for on-site reuse or infiltration
 - Treat runoff from middle portion of event
 - Reduce discharge rate for large flows (prevent downstream habitat destruction)

Design Objectives (cont.)

- > 4 inches
 - Occur Rarely (once every several years to once every several decades or centuries)
 - Produce Relatively Little of Annual Pollutant Mass Discharge
 - Produce Extremely Large Flows and Exceed Drainage System Capacity for Most Events

- Flooding Storms
 - Retain on-site first portion
 - Treat middle portion
 - Reduce discharge rate for large flows
 - Convey excessive flows in secondary drainage system to minimize loss of life and property damage

Characterizing the Flow Rates and Volumes Requiring Control

Ref:

Clark et al. 2009. *Infiltration vs. Surface-Water Discharge*. WERF Report 04-SW-3. To be published Summer 2009.

Table 5-2: Summary of Modeling Guidance for Various Site Conditions Rational, Modified Rational and NRCS Methods¹

Site Condition or Parameter	Rational Method	Modified Rational Method	NRCS-Based Methods			
Mixture of pervious and directly connected impervious surface	Use standard procedures	Use standard procedures	Use weighted average runoff volume			
Unconnected impervious surface	Use not recommended	Use not recommended	TR-55 or Two-Step Technique			
Groundwater recharge areas	Reduce effective size of recharge area ²	Reduce effective size of recharge area ²	Reduce runoff volume by recharge volume			
Time of concentration	Maximum sheet flow length = 150 feet Maximum sheet flow n = 0.40 Include effects of storage and ponding areas					

Notes: Table presents summaries only. See text for complete descriptions for each computation method. For sites with combination of recharge and non-recharge areas. Methods not recommended where entire area is recharged. See text for details.

New Jersey Stormwater Best Management Practices Manual • Chapter 5: Computing Stormwater Runoff Rates and Volumes • February 2004 • Page 5-26

Many methods approved to calculate runoff volume.

Limitations of Using Drainage Design Models for Small Storms and On-Site Designs

- Problems arise when trying to use drainage design hydrology models for water quality analyses.
 - TR-55 greatly under predicts flows from small rains: NRCS recommends that TR-55 not be used for rains less than 0.5 inch.
 - HEC-HMS has TR-55 "built in" as a option.
- Most drainage models assume that all/most flows originate from directly connected impervious areas, with very little originating from pervious areas.
 - However, with larger rains (drainage design rains), contribution from pervious areas significant.
- Water quality problems typically occurring from small and intermediate sized rains, not drainage design storms.

Characterizing the Stormwater Quality and Receiving Water Standards

Ref:

Clark et al. 2009. *Infiltration vs. Surface-Water Discharge*. WERF Report 04-SW-3. To be published Summer 2009.

Lot Size as a Guide for Stormwater Management Decisions

Stormwater Controls	Low/Very Low Density Residential (> 2 acre lot size)	Medium Density Development (0.5 to 2 acre lot)	High Density Development		
On-site infiltration (unless contamination potential exists)	Rooftop and pavement	Rooftop and pavement where space available	Rooftop only, depending on roofing materials		
Minimize compaction	YES	YES	Likely not feasible		
Grass swale drainage for roads (unless contamination potential exists)	YES	YES	Likely not feasible		
Wet ponds	Likely not needed	Commercial and industrial areas	Commercial and industrial areas		
High-rate in-line pollutant treatment	Likely not needed	Critical source areas	Critical source areas (may want to send runoff to treatment plant)		

						GROUNDWATER RECHARGE							
Acceptable BMPs for					BMP	Delaware SW Guidanc Manual (1)	Maryland e SW Handbook (New Jerse BMP 2) Manual (y Ner 3) Mai	w York P SW nual (4) H	ennsylvania BMP andbook (5)	Center for Watershed Protection (6)	
Post Construction					Permeable Paving			Ch. 4, Table : Ch. 5, p. 111	2-5;	Se	ction 8	Fact Sheets SW Management Porous Pavement	
Stormwater				Stormwate Infiltration	r	Section 3.3	Ch. 4, Table : Ch. 5, p. 98	2-5; Sectio	n 6.3 Se	ction 8	Manual Builder Performance Criteria Infiltration Systems		
Management				Grass Swa	le P. 3-57	Section 3.5	Ch. 5, p. 84	Sectio	n 6.5 Se	ction 8	Manual Builder Performance Criteria Open Channels		
(PA DEP 2000)				Bioretentic	n Appendix A	Section 3.4	Ch. 4, Table : Ch. 5, p. 55	2-5; Sectio	n 6.4 Se	ction 8	Manual Builder Performance Criteria Filtering Systems		
WATER QUALITY				Filter Strip	P. 3-39	1	Ch. 4, Table :	1-5	Se	ction 8	Fact Sheets SW Management Grassed Filter Strips		
BMP	Delaware SW Guidance Manual (1)	Maryland SW Manual (2)	New Jersey BMP Manual (3)	New York SW Manual (4)	Peunsylvania BMP Handbook (5)	Center for Watershed Protection (6)							
Permeable Paving			Ch. 4, Table 2-5; Ch. 5, p. 111		Section 8	Fact Sheets SW Management Porous Pavement							
Stormwater Infilmation		Section 3.3	Ch. 4, Table 2-5; Ch. 5, p. 98	Section 6.3	Section 8	Manual Builder Performance Criteria Infiltration Systems							
Grass Swale	P. 3-57	Section 3.5	Ch. 5, p. 84	Section 6.5	Section 8			RATE AND	VOLUME	CONTROL			
Eilter Strip	Appendix A	Section 3.4	Ch. 4, 1868 2-3; Ch. 5, p. 55	Section 0.4	Section 8	BMP	Delaware SW Guidance Manual (1)	Maryland SW Manual (2)	New Jersey BMP Manual (3)	New York SW Manual (4)	Pennsylvani BMP Handbook (5	a Center for Watershed Protection	
Stormwater	1. 202	Section 3.2	Ch. 4, Table 2-5.	Section 6.2	Section 8	Permeable Paving		Cà	4, Table 2-5; 5, p. 111		Section 8	Fact Sheets SW 3damagement Porous Pavement	
Wetlands Water Quality			CE 5		Section 8	Stoturwater Infiltration		Section 3.3 Ch	4, Table 2-5; .5, p. 98	Section 6.3	Section 8	Manual Builder Performance Criteria Infiltration Systems	
Sand Filter		Section 3.4	Ch. 4, Table 2-5; Ch. 5, p. 137	Section 6.4	Section 8	Grass Swale	P. 3-57	Section 3.5 Ch	.3, p. 84	Section 6.5	Section 8	Manual Builder Performance Criteria Open Channels	
Wet Pond (extended detention pond)		Section 3.1	Ch. 4, Table 2-5; Ch. 5, p. 150	Section 6.1	Section 8	DesPend	Uppears V	NCURE J.A Ch	. 4, 1969 2-5; . 5, p. 55	section 6.4	Section 8	Performance Criteria Filtering Systems	
Riparian Corridor Management	Appendix B		Ch. 4, Table 2-5		Section 8	Chapter		Faction 3.3	4 Table 3 C	Same 63	Castion 9	Performance Criteria Ponds	
Roottop Euroff Management	<u> </u>		Ch. 3, p. 127		Section 8	Wetlands		Section 3.2 Ca	. 4, 12008 2-5; .5	Section 6.2	Section 8	Performance Criteria Wetlands	
						wer Pond (extended detention pond)		Section 3.1 Ch	4, Table 2-5; 5, p. 150	Section 6.1	Section 8	Manual Builder Performance Criteria Ponds	
						Raparian Corridor Management Rooflop Romoff Management	Appendix B	Ca Ca	4, Table 2-3 5, p. 127		Section 8 Section 8		

New Solutions for Peak Flow Control: Maintain Time of Concentration

- Open drainage
- Use green space
- Flatten slopes
- Disperse drainage
- Lengthen flow paths
- Save headwater areas
- Vegetative swales
- Maintain natural flow paths
- Increase distance from streams
- Maximize sheet flow

Maintaining pre-development time of concentration essential to mimicking pre-development hydrology! Reduce peak flows in receiving waters!

Disconnect Impervious Areas and Infiltrate "Clean Stormwater" for Groundwater Recharge

- Directs water from streets and driveways
- Disconnects roof drains to cisterns or infiltration areas
- Reduces the amount & velocity of water flowing into piping system and the receiving water.
- Reduces the amount of pollution entering the drainage system.

On-Site Water Disposal Options

Rainwater Harvesting

Infiltration (with or without subdrains)

Soil Compaction and Recovery of Infiltration Rates

- Typical site development dramatically alters soil density.
- This significantly reduces infiltration rates, especially if clays are present.
- Also hinders plant growth by reducing root penetration (New Jersey NRCS was one of the first groups that researched this problem).
- Compaction should be prevented in areas selected for infiltration. Position equipment outside the area.

Soil Texture	Compaction Method	Dry Bulk Density (g/cc)	Long-term Average Infilt. Rate (in/hr)	Compaction,
Sandy	Hand	1.595	35	a small amount
Loam	Standard	1.653	9	of clay is
	Modified	1.992	1.5	present, causes
Silt	Hand	1.504	1.3	a large loss in
Loam	Standard	1.593	0.027	infiltration
	Modified	1.690	0.0017	capacity.
Clay	Hand	1.502	0.29	
Loam	Standard	1.703	0.015	
	Modified	1.911	<<0.001	

Solutions to Compaction Problems

- Use soil amendments to improve existing soil structure or restore soil structure after construction
- Remove soil layer with poor infiltration qualities
- Replace soil with improved soil mix
 Mix sand, organic matter, and native soil (if no clay)
- Use deep rooted plants or tilling to improve structure (but only under correct moisture conditions)
 - Chisel plow, deep tilling, native plants
- Pre-treat water
- Select different site

Chemical Changes Affecting Soil Infiltration Rates

- Sodium adsorption ratio (SAR)
 - From agriculture

- Noted that as the ratio of sodium concentrations to the square root of the calcium and magnesium concentrations increased, soil clays dispersed and soil became impenetrable.
- SAR > 15 indicates excess of sodium adsorbed
- SAR > 4 can cause decreased infiltration rates in clay soils
- SAR > 2 can cause decreased infiltration rates in loam soils
- Gypsum as a soil amendment can resolve problems.

Clogging Predictions and Pretreatment of Solids

Groundwater Contamination Concerns

- Must address potential groundwater contamination.
 - Residential stormwater (typically the largest fraction of total runoff volume) can generally be safely infiltrated, if use surface infiltration practices.
 - Commercial runoff likely would require pre-treatment.
- Possible to amend or replace soils.
 - Soil amendments should contain low phosphorus to prevent phosphorus migration from the soil to the groundwater.
 - Use cation and anion exchange capacity to predict lifespan of soil media for pollutant removal. (NOTE: CEC and AEC are pH-dependent <u>and</u> several metals are more soluble at the pHs seen in native PA soils).

Media Treatment?									
	Biofilte S	r-Grass wale	Biofilte S	r-Grass wale	Biofilter-Grass Swale				
Analytical Parameter	Inflow	Inflow Outflow Inflow Outflow		Inflow	Outflow				
Ammonia, Total as N (mg/L)	0.1192	0.05027	0.1192	0.0305	0.1192	0.1246			
Calcium, Total (mg/L)	9.579	11.43	9.579	11.98	9.579	9.155			
Chloride, Total (mg/L)	1.006	1.658	1.006	1.438	1.006	1.767			
Copper, Total (µg/L)	10.05	4.047	10.05	3.604	10.05	10.4			
Iron, Total (mg/L)	419.1	98.81	419.1	64.6	419.1	331.2			
Lead, Total (µg/L)	4.763	1.965	4.763	2.045	4.763	3.577			
Magnesium, Total (mg/L)	1.081	0.5604	1.081	0.3621	1.081	0.4085			
Manganese (µg/L)	12.59	6.765	12.59	2.08	12.59	13.79			
Nitrate, Dissolved (mg/L)	0.2716	0.29	0.2716	0.1696	0.2716	0.2689			

Benefits of Urban Stormwater Infiltration/Soil

Source: International Stormwater BMP Database

Is Groundwater or Soils Contamination of Concern?

- Mass Balance (Conservation of Mass): Input = Output
- If reduction seen between surface inflow and outflow, then the pollutants either are (1) trapped in the infiltration device or (2) transported in the subsurface below the device.
- How likely are they to be transported "far enough" to cause problems?

Groundwater Contamination Concerns

- Why did groundwater contamination occur in some areas and not in others?
 - Depth to water table
 - Soil Type
 - Pollutant interaction with the soil
- Models can be used to predict depth of pollutant penetration in the subsurface.
 - Two types of models:
 - Simple, Linked Model
 - Computer Vadose Zone Model

Simple Weak-Linked Model for Potential Problem Pollutants

Model incorporates information about soils and pollutants to predict migration potential, including:

- Pollutant abundance in stormwater,
- Pollutant mobility through the unsaturated zone above the groundwater (related to soil characteristics), and
- Pollutant treatability before discharge.

Computer Modeling Objectives

- Determine the controlling factors (and interactions) have the greatest influence on the migration of selected pollutants (Zn and NaCl) in the vadose zone.
- Improve the siting and design of infiltration devices.
 - Create infiltration devices that encourage groundwater recharge while reducing or preventing groundwater contamination.
- Evaluate use of factorial analysis to determine where to focus data collection to support modeling efforts.

Issues to be Addressed in Stormwater Infiltration Design

- Poor infiltration capabilities for many urban soils. Therefore:
 - Requiring less infiltration in clayey soils than in sandy soils may need to be adjusted because of compaction vs. soil texture effects.
 - Designs of infiltration practices ("size") should be more closely related to the impervious-surface areas and runoff solids concentration than to soil texture.
 - Soil disturbance (compaction) is also a critical factor hindering infiltration but can at least be partially controlled.

Critical Source Area Controls

- Control/treatment still required for areas where runoff is polluted.
 - Treatment of water prior to either infiltration/groundwater recharge or discharge to surface receiving water.
- Common Control Technologies:
 - Oil/grease/solids separators
 - Filters
 - Ion exchange/sorption
 - Chemical addition

