Sustainable Stormwater Management and Small Storm Design

Michele C. Adams, P.E. LEED AP Meliora Environmental Design

Annual Water Cycle for an Average Year – Piedmont Region Example

Natural Landscape

Altered Landscape

Where does most of the rain come from?

Most of the rain comes from small storms.

It wants to be a forest

99% of North America was covered by forest from the Atlantic shoreline to the prairies of the Great Plains.

Today only fragments remain.

Common Bulk Density Measurements or How compacted is this soil?

Bulk Density is defined as the weight of a unit volume of soil including its pore space (g/cc or grams/cubic centimeter). Water and air are important components of soil and we must frame our soil concepts so that factors affecting water and air dynamics are included. Thus, we are primarily interested in bulk density and pore space as they affect water and aeration status, and root penetration and development.

Is there a different approach for stormwater?

- Volume
- Integrated into the Built Environment
 - Paths, Parking, Landscape, Street Trees, Playfields
- Importance of Soil and Vegetation
- Small and Large Storms
- Sustainable
- Maintenance and Cost

We forget that the water cycle and the life cycle are one.

- Jacques Cousteau

Low Impact Development (LID)

"Allow natural infiltration to occur as close as possible to the original area of rainfall. By engineering terrain, vegetation, and soil features to perform this function, costly conveyance systems can be avoided and the landscape can retain more of its natural hydrologic function."

National Association of Home Builders

Percentage of Storms 1.5" or Less

City	Annual Precipitation (in)	1.5" and less
New England		
Portland, ME	41	95%
Mid-Atlantic / Piedmont		
Philadelphia, PA	45	96%
Chapel Hill, NC	46	93%
Atlanta, GA	51	91%
Southeast		
Miami, FL	60	92%
Tampa, Fl	53	93%
New Orleans, LA	62	84%
Great Lakes		
Detriot, MI	73	95%
Buffalo, NY	131	96%
	2/	
	30	9 5%
Columbus, OH Dapid City, SD	67	93%
Rapid City, SD	00	9970
Southwest		
Los Angeles, CA	17	91%
Phoenix, AZ	8	98%
Austin, TX	31	90%
West		
Boise, ID	33	99%
Denver, CO	16	99%
Northwest		
Seattle, WA	37	98%

Small Storms By Size

		Precentage of Storms			
City	Annual Precipitation (in)	Less than 0.5"	0.5 to 1.5	More than 1.5"	
New England					
Portland, ME	41	72%	23%	5%	
Mid-Atlantic / Piedmont					
Philadelphia, PA	45	71%	25%	4%	
Chapel Hill, NC	46	71%	22%		
Atlanta, GA	51	65%	26%	9%	
Southeast					
Miami, FL	60	76%	16%	8%	
Tampa, FL	53	74%	19%	7%	
New Orleans, LA	62	62%	22%	16%	
Great Lakes					
Detriot, MI	73	73%	22%	5%	
Buffalo, NY	131	80%	16%	4%	
Midwest					
West Lafayette, IN	36	73%	22%	5%	
Columbus, OH	67	80%	15%	5%	
Rapid City, SD	56	90%	9%	1%	
Southwest					
Los Angeles, CA	17	72%	19%	9%	
Phoenix, AZ	8	82%	16%	2%	
Austin, TX	31	71%	19%	10%	
West					
Boise, ID	33	94%	5%	1%	
Denver, CO	16	86%	13%	1%	
Northwest					
Seattle, WA	37	84%	14%	2%	

Can we use many measures, large and small, to...

- Catch the water near the source?
- Return water to soils and vegetation?
- Slow the water?
- Clean the water?
- Restore the landscape?
- Recharge groundwater?
- Not so many pipes, basins, outfalls?

LID Project Examples

morning New Institutional – Penn State Visitor Center

New Residential – Springbrook Residential

afternoon Urban Retrofit – Waterview Recreation Center and Wilmington Acme

Penn State Visitor Center

- Constructed in 1999/2000
- Funding from PaDEP Growing Greener
- Stormwater in the Landscape:
 - Porous Parking
 - Porous Sidewalks
 - Rain Gardens
 - Infiltration Trenches
 - Vegetated Infiltration Beds

Design Team Coordination

• Architect, Landscape Architect and Engineer worked together to fit design to site topography.

Porous Asphalt Parking with Groundwater Recharge Beds

- Fitting stormwater into the built environment.
- Reducing the disturbance footprint.
- Eliminating detention basin
- Returning rainfall to groundwater

Porous Concrete Sidewalk

Reducing impervious surfaces

POROUS PAVEMENT

Rain Gardens / Bioretention

Using Soils and Vegetation to Reduce Volume

Vegetated Infiltration Beds

Stormwater Below Planting Bed

Site Design Considerations

- Karst Topography / Sinkhole Concerns
- Shallow soil mantle
 - Hagerstown HSG "C"
- Downstream Flooding and Water Supply Wells
- Stormwater Management Goals
 - Volume: 2 Year Net Increase
 - Rate: 2-year through 100-year peak
 - Maintain Infiltration and Vegetation

Geology - Karst Area Evaluation

- 1. Geotechnical Investigation Borings
 - Depth to rock
 - Pinnacles
 - Sinkhole potential
- 2. Sinkholes/depressions/other concerns
 - Detailed Geotechnical Evaluation
 - GPR or other techniques
- 3. Shallow Borings
 - 10 feet deep, 25 feet OC
 - Test Infiltration Areas

Soil Test Pit and Boring Locations

Subsurface Infiltration Bed Cross-Sections and Profiles

Subsurface Infiltration Bed Contours and Grading

Stormwater Design

- Manage 2-Year Runoff Volume Increase
- Infiltration SPREAD IT OUT
 - 5:1 Ratio of Impervious Area to Infiltration Area
 - 3:1 Ratio for Limestone

	Volume of Stone Below Invert (ft ³)	Storage Volume* (ft ³)	Bottom Area (min) (ft ²)
Upper Parking Bay	4,955	1,982	3,750
Lower Parking Bay	11,374	4,550	5,225
Infiltration Bed	3,255	1,302	2,025
Infiltration Trench	1,420	568	450
TOTAL:	21,004	8,402	3,361

* Based on 40% void space in stone bed

2 Year Net Increase: 10,671 ft³ Impervious Area: 13,818 ft² Ratio of Impervious to Infiltration Area: 13,818 ft² : 3,361 ft² = 4.1 : 1

New Residential: Village at Springbrook

- High Density Residential
- 59 acres
- 269 homes:
- 146 Townhouses
- 96 Quads
- 17 Singles
- Sinkholes and limestone

Can Water be Managed within the landscape?127 small measures, no detention basins.

BMPs Integrated into the Site

- Infiltration Beds beneath Driveways
- Porous Concrete Sidewalks
- Porous Asphalt Paths
- Vegetated Swales and Checkdams
- Infiltration Beneath Planting Beds
- Rain Gardens
- Porous Pavement Parking

Integration of Stormwater into Urban Streetscape Porous Sidewalk and Swale with Raised Curb

Inlets with Weirs to Control Flow and Water Level

Stormwater beds beneath driveways (standard asphalt). Overflow to swales along streets

- Quad homes without basements have down spouts connected to infiltration beds beneath impervious driveways.
- Paths made of pervious asphalt.

 Each home manages its own runoff in a Rain Garden seepage bed, located in the right-ofway.

Central Park

Renderings by SMP Architects

Renderings by SMP Architects

Architects

Central Park

Stormwater Decision Making

Residential

Public Space

Process for LID

- Understand Existing Site soils, slopes, vegetation, water levels
- Map Important Natural or Manmade Features

Understand Existing Site – soils, slopes, vegetation, water levels

Map Important Natural or Manmade Features

Process for LID

- Understand Existing Site soils, slopes, vegetation, water levels
- Map Important Natural or Manmade Features
- Fit Development Program to Site minimize disturbance and grading

Figure 4.5 Use sensitive areas such as natural drainage areas to form boundaries or buffer zones between clusters of housing.

Process for LID

- Understand Existing Site soils, slopes, vegetation, water levels
- Map Important Natural or Manmade Features
- Fit Development Program to Site minimize disturbance and grading
- Implement Stormwater BMPs Close
 to Source, within Built Footprint

Process for LID

- Understand Existing Site soils, slopes, vegetation, water levels
- Map Important Natural or Manmade Features
- Fit Development Program to Site minimize disturbance and grading
- Implement Stormwater Close to Source, within Built Footprint
- Understand Volume Increase for Site, and for Each BMP Drainage Area

Office Example

- Pre-development
 - 4.30 acres of <u>Woods</u> (CN=50)
- Post-development
 - 1.08 acres of <u>Woods</u> (CN=50)
 - 1.27 acres of <u>Lawn</u> (CN=61)
 - 1.95 acres of <u>Pavement and Building</u> (CN=98)

How Do Woods Currently Work?

- Before Disturbance, for 3.1" rain
 - Ia = 0.2*S
 - S = 1000/50 10 = 2"
 - Ia = 0.2*10'' = 2''
- 2" of rainfall <u>before</u> runoff begins!

$$Q = (P - 0.2^*S)^2 / (P+0.8^*S)$$

$$Q = (3.1 - 0.2^*10)^2 / (3.1 + 0.8^*10)$$

$$Q = 0.26''$$

- Even in 3.1" rainfall events, woods generate 0.26" of runoff. Since most storms are small, leave the woods in place as much as possible!
- Net out undisturbed woods, only consider disturbed site

4.30 ac. - 1.08 ac. = 3.22 ac.

Volume = 3.22 ac. * 0.26'' = 3,040 c.f.

Net Increase in Volume

- Post-development
 - For 3.1" storm

	Area (ac)	CN	la	Q	Volume (c.f.)	
Lawn	1.27	61	1.28"	0.40"	1,859	
Impervious	1.95	98	0.04"	2.87"	20,331	
					22,190	

- Net Increase: 22,190 c.f. 3,040 c.f. = 19,150 c.f.
- Goal is to capture 19,150 c.f.
 - Storage, Infiltration, Reuse

Small Storm Hydrology

Google "Bob Pitt" Click on "Publications"

"Small Storm Hydrology and Why it is Important for the Design of Stormwater Control Practices" Robert Pitt, P.E., Ph.D., DEE Department of Civil and Environmental Engineering The University of Alabama

Small Storm Hydrology

Design by Land Use and Rainfall Amount

Volume of Runoff = P x R_v x Area

Small Storm Hydrology

Table 2-6. Summary of Volumetric Runoff Coefficients for Urban Runoff Flow Calculations (Pitt 1987).

Rain [Depth	Flat roofs* (or large unpaved parking areas)	Pitched roofs*	Large impervious areas*	Small impervious areas and streets	Sandy soils	Typical urban soils	Clayey soils
mm	inches							
1	0.04	0.00	0.25	0.93	0.26	0.00	0.00	0.00
3	0.12	0.30	0.75	0.96	0.49	0.00	0.00	0.00
5	0.20	0.54	0.85	0.97	0.55	0.00	0.05	0.10
10	0.39	0.72	0.93	0.97	0.60	0.01	0.08	0.15
15	0.59	0.79	0.95	0.97	0.64	0.02	0.10	0.19
20	0.79	0.83	0.96	0.97	0.67	0.02	0.11	0.20
30	1.2	0.86	0.98	0.98	0.73	0.03	0.13	0.22
50	2.0	0.90	0.99	0.99	0.84	0.07	0.16	0.26
80	3.2	0.94	0.99	0.99	0.90	0.15	0.24	0.33
125	4.9	0.96	0.99	0.99	0.93	0.25	0.35	0.45

Runoff Coefficients for Directly Connected Areas:

*If these "impervious" areas drain for a significant length across sandy soils, the sandy soil runoff coefficients will usually be applied to these areas, however, if these areas drain across typical, or clayey soils, the runoff coefficients will be reduced, depending on the land use and rain depth, according to the following table:

ACME - Wilmington, DE

ACME - Wilmington, DE

WILMINGTON ACME STORMWATER CONCEPT PLAN RUNOFF VOLUMES BY THE SMALL STORM HYDROLOGY METHOD & PEAK RATE CALCULATIONS

								Peak Flow (Q=cia)			
Drainage Area	Description	Total Drainage Area	Area	Runoff Coefficient Rv for 1/2" P	1/2" Volume	Runoff Coefficient Rv for 1" P	1" Volume	1.5" Volume	1-yr Peak Flow	2-yr Peak Flow	10-yr Peak Flow
		(ft ²)	(ac)		(ft ³)		(ft ³)	(ft ³)	(cfs)	(cfs)	(cfs)
1A	Parking Lot (Large Imp.)	21,216	0.5	0.97	857	0.98	1,733	2,599	1.95	2.32	3.00
1B1	Slope (Urban Soils)	9,992	0.2	0.1	42	0.13	108	162	0.19	0.23	0.30
1B2	Parking Lot (Large Imp.)	5,911	0.1	0.97	239	0.98	483	724	0.54	0.65	0.84
1C	Parking Lot (Large Imp.)	6,632	0.2	0.97	268	0.98	542	812	0.61	0.73	0.94
2	Slope (Urban Soils)	15,758	0.4	0.1	66	0.13	171	256	0.31	0.36	0.47
ЗA	Building (Flat Roof)	13,220	0.3	0.79	435	0.86	947	1,421	1.22	1.45	1.87
3B	Building (Flat Roof)	11,129	0.3	0.79	366	0.86	798	1,196	1.02	1.22	1.58
4A	Parking Lot (Large Imp.)	10,504	0.2	0.97	425	0.98	858	1,287	0.97	1.15	1.49
4B	Slope (Urban Soils)	6,161	0.1	0.1	26	0.13	67	100	0.12	0.14	0.18
5	Parking Lot (Large Imp.)	7,117	0.2	0.97	288	0.98	581	872	0.66	0.78	1.01
6A	Parking Lot (Large Imp.)	12,586	0.3	0.97	509	0.98	1,028	1,542	1.16	1.38	1.78
6B	Slope (Urban Soils)	10,204	0.2	0.1	43	0.13	111	166	0.20	0.24	0.30
7A	Dupont Street (Large Imp.)	14,955	0.3	0.97	604	0.98	1,221	1,832	1.38	1.64	2.12
7B	Dupont Street (Large Imp.)	5,273	0.1	0.97	213	0.98	431	646	0.49	0.58	0.75
	TOTAL	150,658	1.9		4,380		9,077	13,616	11	13	17

ACME - Wilmington, DE

WILMINGTON ACME STORMWATER BMP CAPTURE VOLUMES

ВМР Туре	Area (s.f.)	Depth (ft)	Storage Capacity (%)	Capture Volume (c.f.)	Drainage Area Name	Small Storm 1" Volume (c.f.)	Drainage Area (s.f.)	Drainage Area (ac.)
Rain Garden #1	1,136				6A	1,028	12,586	0.3
Surface Storage	1,136	0.5	100%	568		,	,	
Soil Storage	1,136	2	20%	454.4				
Stone Storage	1,136	0	40%	0				
				1,022				
BioSwale #1	1,576				2, 3A	1,118	28,978	0.7
Surface Storage	1,576	0.33	100%	520				
Soil Storage	1,576	2	20%	630.4				
Stone Storage	1,576	0	40%	0				
				1,150				
BioSwale #2	1,195				4B, 6B	1//	16,365	0.4
Surface Storage	1,195	0.33	100%	394				
Soil Storage	1,195	2	20%	478				
Stone Storage	1,195	0	40%	0				
				872				
Tree Trench #1	1 1 3 6				1A 3B 5	3 111	30 462	0.0
Surface Storage	1,130	0.5	100%	568	IA, 3D, 3	3,111	59,402	0.9
Suil Storage	1,130	0.5	20%	500 691 6				
Stone Storage	1,130	25	20%	1126				
Stone Stonage	1,130	2.5	40 /0	2 386				
Infiltration Bed #1	1 567	2	40%	1253.6	74	1 221	14 955	0.3
	1,007	<u> </u>		1.254		•, • • •	14,000	0.0
Infiltration Bed #2	796	2	40%	636.8	7B	431	5.273	0.1
		_		637			0,210	••••

ACME - Wilmington, DE

WILMINGTON ACME STORMWATER BMP CAPTURE VOLUMES

ВМР Туре	Area (s.f.)	Depth (ft)	Storage Capacity (%)	Capture Volume (c.f.)	Drainage Area Name	Small Storm 1" Volume (c.f.)	Drainage Area (s.f.)	Drainage Area (ac.)
Rain Garden #1	1,136				6A	1,028	12,586	0.3
Surface Storage	1,136	0.5	100%	568				
Soil Storage	1,136	2	20%	454.4				
Stone Storage	1,136	0	40%	0				
				1,022				
BioSwale #1	1,576				2, 3A	1,118	28,978	0.7
Surface Storage	1,576	0.33	100%	520				
Soil Storage	1,576	2	20%	630.4				
Stone Storage	1,576	0	40%	0				
				1,150				

Porous Walkways

Curb Cuts to Meadow

smail and Large Measures Built into the Landscape

How we design every site affects our water resources for the future.