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Executive Summary
The Economic Benefits of Cleaning Up the Chesapeake
A Valuation of the Natural Benefits Gained by Implementing  
the Chesapeake Clean Water Blueprint

The Chesapeake Bay is a national treasure. Its forests, wetlands, and waters provide many  
natural benefits to the 17 million people and associated plants and animals that call this 
64,000- square-mile region home. But those benefits have been greatly reduced by agricultural, 
urban and suburban, sewage treatment, and air pollution.

In 2010, the six Bay states, the District of Columbia, 
and the federal government began a renewed effort 
to restore the health of the Bay and its vast network 
of rivers and streams. That effort—the Chesapeake 
Clean Water Blueprint1—is designed to substantially 
reduce the amount of nitrogen, phosphorus, and 
sediment pollution that enters local waters and the 
Bay. Its goal: to restore the Bay’s ecological health.  
In doing so, implementing the Blueprint will reduce 
risks to our health, provide a legacy of clean water  
for our children and grandchildren, and increase 
economic benefits to the region. 

Fully implementing the Blueprint is a big job.  
It requires the commitment, time, and resources of  
all sectors of our society and every individual in  
the watershed. 

So, what will be the return? According to the peer-reviewed economic report, The Economic 
Benefits of Cleaning Up the Chesapeake, it will be tremendous. The report’s findings include  
the following: 

1. In 2009 (before the Blueprint), the lands and waters of the Chesapeake Bay region provided 
economic benefits totaling $107.2 billion annually. This serves as the baseline for our study. 
These benefits include air and water filtration, agricultural and seafood production, property 
valuation, and flood and hurricane protection.

2. The value of these same benefits will increase by $22.5 billion to $129.7 billion annually  
if the Blueprint is fully implemented. Once realized, those benefits would be enjoyed year 
after year.

3. If the Blueprint is not fully implemented, pollution loads will increase, and the value of  
the natural benefits will decline by $5.6 billion annually to $101.5 billion. The value  
of the Bay region’s natural benefits will decline further after 2025 as additional pollution 
continues to degrade our natural resources.

1 The Blueprint includes the science-based pollution limits established by the Chesapeake Bay Total Maximum Daily  
Load and the state-specific implementation plans designed to achieve those limits. EPA and the Bay jurisdictions  
agreed to implement practices to achieve 60 percent of the necessary pollution reductions by 2017, and 100 percent  
of those practices in place by 2025.

ATLANTIC
OCEAN

MARYLAND

CANADA

OHIO

NORTH CAROLINA

CT

MA

NH

VT

PENNSYLVANIA

NEW YORK

WEST
VIRGINIA

NEW
JERSEY

VIRGINIA

DELAWAREWASHINGTON, DC

0 50 Miles

LU
CI

D
ID

TY
 IN

FO
RM

AT
IO

N
 D

ES
IG

N



2 CHESAPEAKE BAY FOUNDATION OCTOBER 2014 CBF.ORG/ECONOMICBENEFITS

CLIMATE STABILITY
Influence of land cover and biologically  
mediated processes on maintaining  
a favorable climate, promoting human  
health, crop productivity, recreation,  
and other services.
Chesapeake land uses that  
provide this benefit:
Forest Urban Open Wetland

FOOD PRODUCTION
The harvest of agricultural produce,  
including crops, livestock, and livestock 
by-products; the food value of hunting, fishing, 
etc.; and the value of wild-caught and 
aquaculture-produced fin fish and shellfish.
Chesapeake land uses that  
provide this benefit:
Agriculture Open Water Wetland

WATER FLOW REGULATION
Modulation by land cover of the timing  
of runoff and river discharge, resulting in  
less severe drought, flooding, and other  
consequences of too much or too little water 
available at the wrong time or place.
Chesapeake land uses that  
provide this benefit:
Forest Urban Open Urban Other Wetland

WATER SUPPLY
Filtering, retention, storage, and delivery of  
fresh water—both quality and quantity— 
for drinking, irrigation, industrial processes, 
and other uses. 
Chesapeake land uses that  
provide this benefit: 
Forest Open Water Wetland

What Are Natural Benefits?
Our lands, waters, and associated plants and animals provide natural benefits that economists call ecosystem services.  
People depend on these services to sustain and enhance human life. In addition to the production of goods such as food and 
timber, these benefits from nature include life-supporting processes such as water and air purification and flood protection,  
and life-enhancing assets such as beautiful places to recreate and live. Despite their vital importance, these natural benefits 
are often taken for granted, their value not quantified. Over the past decade, however, the acceptance of forests, wetlands, and 
other ecosystems as vital economic assets has led to an increase in studies calculating these natural benefits in regions 
including the Everglades, the Mississippi Delta, the Puget Sound—and now the Chesapeake.

AIR POLLUTION TREATMENT
Purification of air through the absorption  
and filtering of airborne pollutants by  
trees and other vegetation, yielding cleaner,  
more breathable air (reduction of NOx,  
SOx, CO2), reduced illness, and an  
improved quality of life. (Note: Economists  
more commonly call this “Gas Regulation.”)
Chesapeake land uses that  
provide this benefit:
Forest Urban Open Wetland

WASTE TREATMENT
Removal or breakdown of nutrient pollution 
and other chemicals by vegetation, microbes,  
and other organisms, resulting in fewer,  
less toxic, and/or lower volumes of pollutants 
in the system.
Chesapeake land uses that  
provide this benefit:

Forest Open Water Wetland

RECREATION
The availability of a variety of safe and 
pleasant landscapes—such as clean water 
and healthy shorelines—that encourage 
ecotourism, outdoor sports, fishing, wildlife 
watching, etc.
Chesapeake land uses that  
provide this benefit:
Agriculture Forest Open Water
Urban Open Wetland Other

AESTHETIC VALUE
The role that beautiful, healthy natural  
areas play in attracting people to live,  
work, and recreate in a region;  
often reflected in property values.
Chesapeake land uses that  
provide this benefit:
Agriculture Forest Open Water
Urban Open Wetland Other
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The Methods
To analyze the benefits that the Chesapeake Bay’s 
watershed (a six-state drainage area) provides, the 
authors first established a 2009 baseline. They 
considered the environmental condition of seven 
types of land use: agriculture, forest, wetland, open 
water, urban open space, urban other (e.g., paved 
areas), and other (mostly barren land). These land 
uses were derived from data from the Chesapeake 
Bay Program and the National Land Cover Database. 

Next, they calculated how the amount and  
pro duc tivity of these land uses would change if the  
Chesapeake Clean Water Blueprint were fully 
implemented or, alternatively, not implemented, 
Business as Usual. 

The authors then drew from existing economic 
studies to calculate the dollar value of eight ben  efits 
that we enjoy and that are supplied by these land 
uses. The eight are: climate stability, food production, 
water regulation, water supply, air pollution treatment, 
waste treatment, recreation, and aesthetic value.

Finally, for each land use they calculated the total 
value of the natural benefits under the three scenar-
ios (Baseline, Blueprint, Business as Usual) by 
multiplying the acres and condition of each land-use 
type by the dollar value of the applicable eight 
natural benefits. 

(The methodology is fully explained on pages  
8 through 12 of the report, The Economic Benefits of 
Cleaning Up the Chesapeake.) 

The Results
When we implement the Blueprint, some highly 
polluting land uses will be converted to uses that 
produce more natural benefits. For example, agricul-
tural fields that use proven conservation practices 
and urban spaces that incorporate common sense 
development solutions (rain gardens and paving that 
soaks in rain) will pollute less and provide increased 
benefits. In addition, the conversion of land from 
forests and wetlands to uses that produce fewer 
natural benefits (like parking lots and subdivisions) 
will occur at a slower pace. As we reduce the amount 
of nitrogen, phosphorus, and sediment pollution, 
that flows to our waters, the ecosystems on all the 
various land uses will become healthier, more 
capable of providing benefits.

If we fail to implement the Blueprint, we can expect 
to lose more forests and wetlands to development. 
Fewer pollution controls will be implemented on 
urban and suburban streets and agricultural fields. 
Increases in pollution will degrade ecosystems and as 
a result they will produce fewer natural benefits. 

The report indicates that the benefits provided  
by the 64,000-square-mile Chesapeake Bay water-
shed, including its tidal areas, can be valued at more 
than $107 billion annually. Furthermore, when the 
Blueprint is fully implemented, the region will gen-
erate more than $22 billion in additional annual 
benefits. The report cites a decline in value of $5.6 
billion (in 2013 dollars) annually if the Blueprint  
is not fully implemented. 

The authors found that the majority of the benefits  
of implementing the Blueprint will be generated  
by upstream land uses, rather than by the open water 
land use of the Chesapeake Bay and the tidal portion 
of its tributaries. 

Each of the states in the watershed will see substan-
tially enhanced benefits. Virginia, more than $8.3 
billion annually; Pennsylvania, $6.2 billion annually; 
and Maryland $4.6 billion annually. In all cases, for-
ests generated the largest benefits, because more than 
half (55 percent) of the watershed is forested and 
because the services they provide—filtering drinking 
water, reducing flooding, providing recreation and 
beauty—are highly valued. Open water, however, 
had the largest percentage increase associated with 
implementing the Blueprint.

The Costs
CBF’s study addressed only benefits, not costs. 

There are no recent estimates of the total costs of 
implementation, but an earlier estimate put costs in 
the range of roughly six billion per year.2

Considering federal, state, and local investments 
in clean water in the 10 years since that time, we 
estimate the current number is closer to five billion 
annually. And once capital investments are made,  
the long-term annual operations and maintenance 
costs will be much lower. 

The Blueprint will return benefits to the region each 
year at a rate of more than four times the cost of the 
clean-up plan.

2 Chesapeake Bay Watershed Blue Ribbon Finance Panel. 2004. Saving a National Treasure. Financing the Clean-up of the Chesapeake Bay. 
www.chesapeakebay.net/content/publications/cbp_12881.pdf
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The tables below summarize the study’s findings. In all cases, the values are expressed in terms of 2013 dollars. 

SUMMARY OF BENEFIT VALUE (ECOSYSTEM SERVICE VALUES) FOR SEVEN LAND USES, BY SCENARIO

Land Use Baseline Blueprint Business as Usual

Benefit Value 
(billions)

Benefit Value 
(billions)

Change from 
Baseline

Benefit Value 
(billions)

Change from 
Baseline

Agriculture  $12.258  $13.434 10%  $10.949 -11%

Forest  73.960  86.406 17%  69.639 -6%

Open Water  16.721  24.301 45%  16.549 -1%

Other  .467  .508 9%  .386 -17%

Urban Open  3.403  4.706 38%  3.727 10%

Urban Other  .011  .014 26%  .012 7%

Wetland  .356  .364 2%  .270 -24%

Total  $107.176  $129.732 21%  $101.531 -5%

SUMMARY OF BENEFIT VALUES. BY SCENARIO

Natural Benefit Baseline Blueprint Business as Usual

Benefit Value 
(billions)

Benefit Value 
(billions)

Change from 
Baseline

Benefit Value 
(billions)

Change from 
Baseline

Aesthetic Value  $38.446  $47.407 23%  $36.653 -5%

Climate Stability  5.498  6.508 18%  5.237 -5%

Food Production  12.129  13.313 10%  10.839 -11%

Air Pollution Treatment  3.471  4.061 17%  3.271 -6%

Recreation  3.071  4.099 33%  3.227 5%

Waste Treatment  12.155  16.470 35%  11.827 -3%

Water Regulation  12.386  14.448 17%  11.634 -6%

Water Supply  20.019  23.427 17%  18.843 -6%

Total  $107.176  $129.732 21%  $101.531 -5%

SUMMARY OF BENEFIT VALUE FOR CHESAPEAKE BAY JURISDICTIONS. BY SCENARIO

Jurisdiction Baseline Blueprint Business as Usual

Benefit Value 
(billions)

Benefit Value 
(billions)

Change from 
Baseline

Benefit Value 
(billions)

Change from 
Baseline

Virginia  $41.195  $49.540 20%  $38.066 -8%

Pennsylvania  32.637  38.828 19%  30.810 -6%

Maryland  15.892  20.449 29%  15.209 -4%

New York  10.361  12.276 18%  10.363 0%

West Virginia  6.330  7.668 21%  6.458 2%

Delaware  .735  .941 28%  .659 10%

District of Columbia  .025  .029 15%  .027 5%

Total  $107.176  $129.732 21%  $101.531 -5%
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The conclusions are clear.

The Chesapeake region currently provides natural benefits of at least 
$107.2 billion annually. (Baseline Scenario)
The lands and waters of the Chesapeake Bay drainage basin provide economically valuable 
benefits, including flood protection, water supply and filtration, food, waste treatment, 
climate regulation, recreation, and aesthetic value. A conservative estimate of these bene-
fits shows economic value of at least $107.2 billion per year in 2013 dollars, grounded in 
baseline conditions of 2009, prior to initiation of the Blueprint.

For comparison, this sum is approximately one-fourth the size of the gross product of the 
states that contain the Chesapeake Bay watershed and about one-sixth the size of the total 
labor earnings of all the residents of the Bay region’s 207 counties.

Post Blueprint benefits are nearly $130 billion annually, an increase of more 
than $22 billion per year. (Blueprint Scenario)
The value of these benefits when the Chesapeake Clean Water Blueprint has been fully 
implemented and made effective is roughly $129.7 billion per year, measured in 2013 dol-
lars, or more than $22 billion in additional annual benefits when compared to the baseline. 

Without the Blueprint, benefits decline to $101.5 billion annually, a loss of 
$5.6 billion from the baseline. (Business as Usual Scenario)
A “business-as-usual” scenario—which calculates the natural benefits generated by a 
Chesapeake Bay ecosystem that has not profited from the restoration activities associated 
with a fully implemented Blueprint—shows an annual value of $101.5 billion, in 2013 
dollars. It is worth noting that the “business-as-usual” scenario includes many prescribed 
practices that were already underway as of 2014 and will continue to be implemented, 
including upgrading sewage treatment plants and reducing some urban and suburban 
polluted runoff. Post 2025, however, this decrease in value will only get larger as the 
population and associated pollution increase and the Chesapeake region’s environment— 
absent the resiliency provided by the Blueprint’s restoration projects—continues to degrade.

Benefits are enjoyed throughout the entire Chesapeake Bay watershed. 
The Blueprint will improve the ecological health of the Chesapeake Bay and its rivers and 
streams, as well as the land that drains into those waterways. The states will see increased 
annual benefits. Virginia will realize benefits of more than $8.3 billion, Pennsylvania  
$6.2 billion, and Maryland $4.6 billion annually. As percentages of the overall benefits,  
the states’ increased benefits from the Blueprint are generally proportional to their land-
area percentage of the Bay watershed, although Virginia, the second largest, has the  
greatest natural assets owing to the large amount of tidal wetlands and waterways.

Full implementation of the Blueprint makes good economic and  
environmental sense.
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ABSTRACT   
Information on the economic benefits of environmental improvement is an important consideration for anyone (firms, 
organizations, government agencies, and individuals) concerned about the cost-effectiveness of changes in management 
designed to achieve that improvement. In the case of the Chesapeake Bay TMDL (Total Maximum Daily Load of nitrogen, 
phosphorus, and sediment), these benefits would accrue due to improvements in the health, and therefore productivity, of 
land and water in the watershed. These productivity changes occur both due to the outcomes of the TMDL and state 
implementation plans,  also  known  as  a  “Chesapeake Clean  Water  Blueprint”  itself  (i.e.,  cleaner  water  in  the  Bay)  as  well  as  
a result of the measures taken to achieve those outcomes that have their own beneficial side effects. All such changes are 
then translated into dollar values for various ecosystem services, including water supply, food production, recreation, 
aesthetics, and others. By these measures, the total economic benefit of the Chesapeake Clean Water Blueprint is 
estimated at $22.5 billion per year (in 2013 dollars), as measured as the improvement over current conditions, or at $28.2 
billion per year (in 2013 dollars), as measured as the difference between the Clean Water Blueprint and a business-as-usual 
scenario. (Due to lag times—it takes some time for changes in land management to result in improvements in water quality, 
the full measure of these benefits would begin to accrue sometime after full implementation of the Blueprint.) These 
considerable benefits should be considered alongside the costs and other economic aspects of implementing the 
Chesapeake Clean Water Blueprint. 
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BACKGROUND 
The Chesapeake Bay is the largest estuary in the United States, with a 64,000-square-mile watershed that includes parts of 
six states and the District of Columbia. Home to more than 17 million people and 3,600 species of plants and animals, the 
Chesapeake Bay watershed is truly an extraordinary natural system marked by its rich history and astounding beauty.  More 
than 100,000 rivers and streams flow to the Chesapeake and more than half the land is still forested. In total, the Bay 
watershed has 11,684 miles of shoreline, including tidal wetlands and islands—more than the entire West Coast of the 
United States. These natural resources provide valuable and quantifiable economic goods and services e.g., beautiful 
scenery  that  promotes  recreation,  tourism,  and  some  of  the  country’s  highest  property  values;  food like fish, crabs, clams, 
and oysters; and flood protection and erosion control. Like many estuarine and coastal systems, however, the Chesapeake 
Bay is degraded.  

Every summer, the main stem of the Bay and several of its tributaries are plagued by dead zones, where not enough 
dissolved oxygen exists to sustain many forms of aquatic life. The volume of water affected by these dead zones varies by 
year, but on average about 60% of the Bay and its tidal rivers have insufficient levels of oxygen (Chesapeake Bay Program, 
2012). In addition, water clarity in the Chesapeake Bay has declined so that underwater grasses, critically important as fish 
and crab habitat, have decreased to roughly 20% of historic levels.  Because of these problems, the Bay and most of its tidal 
rivers  are  categorized  as  “impaired”  under  the  Clean  Water  Act  (Chesapeake Bay Program, 2012). 

In response to these water-quality problems the Environmental Protection Agency (EPA) promulgated a Total Maximum 
Daily Load (or TMDL) for the Chesapeake Bay, in December 2010 (US EPA, 2010).  A TMDL, legally required under the Clean 
Water Act for impaired waters, is a scientific estimate of the maximum amount of pollution a body of water can 
accommodate and still meet water-quality standards that define healthy waters.  The Bay TMDL set pollution limits for 
nitrogen, phosphorus, and sediment in the Chesapeake Bay needed to restore healthy levels of dissolved oxygen and water 
clarity.  At the same time, the six Bay states and the District of Columbia, which comprise the Chesapeake Bay watershed, 
released their plans (known formally as Watershed Implementation Plans) describing the actions they would take to meet 
those limits by 2025. Together, the enforceable pollution limits (the TMDLs) and the states’ implementation plans comprise 
the Clean Water Blueprint for the Chesapeake and its rivers and streams. 

The Chesapeake Clean Water Blueprint (Blueprint) will provide watershed-wide benefits because restoring the health of the 
Bay also entails improvements in both water in the streams and rivers that supply water to the Bay and in land use and land 
management throughout the watershed. Ecological benefits come from reductions in the amount of pollution, especially 
nitrogen, phosphorus, and sediment reaching the Bay and its tributaries. Higher levels of dissolved oxygen and improved 
water clarity in the Bay and its tributaries are the intended result.  

These changes and the actions taken to achieve them will also produce economic benefits because land and water 
ecosystems that become more productive will supply more tangible and intangible goods and services that have value for 
people.  And  because  these  goods  and  services  are  valued  by  people,  changes  in  the  ability  of  the  Bay’s  ecosystems  to  
deliver them will result in changes in the economic value of the watershed. These changes range from obvious, such as 
increased productivity in commercial and recreational fisheries, to the opaque, such as increased productivity, per acre, of 
forest and farmland, and the seemingly obscure, such as the increase in property values generated by healthier forests and 
waterways.  

No  matter  how  easy  or  difficult  to  see  or  measure,  all  of  these  economic  benefits  provided  by  “ecosystem  services”  are  
relevant to consider as part of the value secured by the Blueprint. The goal of this report is to provide a picture of the 
economic benefits that would accrue as a result of implementing the Blueprint. 



 

 

Objectives  of  the  Study  

With this study, we aim to provide three critical pieces of information. The first is an estimate of the dollar value of eight 
“ecosystem  services”  originating—and largely enjoyed—in the Chesapeake Bay watershed region, prior to the Blueprint. 
For this baseline we look at land-use patterns, water-quality indicators, and pollution loading in 2009. This 2009 scenario 
approximates the natural benefits, at least in financial terms, provided by the 64,000-square-mile Chesapeake Bay 
watershed today.1  

Second is an estimate of the value of the same  services,  but  for  two  future  scenarios.  In  the  “Blueprint”  scenario,  the  
Blueprint is fully implemented, land conversion (to urban uses) slows, forest areas expand, wetland loss slows, and land 
management changes reduce pollution loading. All of this change leads to improvements in water quality.  

In  the  “Business  as  Usual”  (BAU)  scenario,  the  Blueprint  is  not  fully  implemented  (although  some  of  the  plan’s  prescribed  
practices, such as already-planned or completed wastewater treatment plant upgrades, are factored in according to Bay 
Program modeling). Land development and pollution loading continue according to current forecasts, resulting in lower 
water quality and lower ecosystem service productivity overall. 

Third are simply calculations of the differences between the Baseline (i.e., 2009) and Blueprint scenarios and between the 
Blueprint and Business as Usual scenarios. The first of these is the annual incremental contribution to human well-being, 
over and above current conditions, that can be expected as a result of the Clean Water Blueprint. The second is an estimate 
of the annual benefit of living in a world with the Blueprint versus doing nothing more. 

ECOSYSTEM  SERVICES  FRAMEWORK 
Every day in the Chesapeake Bay region, we make decisions that impact the natural systems in our environment.  Most 
often, we do not realize those impacts, nor the fact that they also affect our quality of life and  our  region’s economy. It is 
crucial  these  decisions  reflect  both  nature’s  intrinsic value and its benefits for us. 

The  Chesapeake  watershed’s  
residents benefit in many ways from 
nature. Some of those benefits are 
direct, such as the crabs, fish, and 
crops that have traditionally been 
enjoyed in abundance. Others are 
less obvious, such as trees that filter 
pollution out of our air and water, 
lands that slow or stop floods, and 
wetlands that reduce the impacts of 
storm surges created by increasingly 
frequent extreme weather events.  

The idea that people receive 
benefits from nature is not new, but 
“ecosystem  services”  as  a  term of 
art describing the phenomenon is 
more recent, having emerged in the 
1960s (Reid et al., 2005). Of several 
available definitions2, Gary Johnson 
of the University of Vermont 

provides a definition that 
emphasizes that ecosystem 

                                                 
1 By  “today,”  we  mean  as  measured  under  conditions  for  which  the  most  recent  data  are  available  (i.e., 2009) and adjusted 
for inflation to 2013 levels. 

2 See, for example, Reid et al. (2005), Boyd (2011), and Boyd & Banzhaf (2006). 

FIGURE 1: THE ECOSYTEM SERVICE CASCADE 
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services are not necessarily things—tangible bits of nature like a cup of water, a bushel of crabs, or a sunset—but rather, 
sometimes the impacts on people of those bits of nature. To wit: 

Ecosystem services are the effects on human well-being of the flow of benefits from an ecosystem endpoint to a 
human end point at a given extent of space and time (Johnson, 2010). 

This definition provides a good overview, and Balmford, et al. (2010, 2013) present a framework for thinking about 
ecosystem  services  that  adds  clarity  by  “disaggregat[ing]  ecosystem  services  into  three  interlinking sets, which differ in their 
proximity to human well-being: core ecosystem processes, beneficial ecosystem processes, and ecosystem benefits (p. 
164).”  This  chain  of relationships,  illustrated in Figure 1, from core processes to beneficial processes to human benefits, is 
implicit in the definition.  

By separating them, the authors provide terms to clarify when we are talking about ecological endpoints (or components of 
nature) versus economic endpoints (human enjoyment/consumption/use). It is the latter linkage from beneficial processes 
to benefits themselves that provides the basis for identifying the economic/human connections most relevant to the 
Blueprint. 

It is worth putting a bit more complexity into our mental picture of ecosystem services. Figure 2 shows the same cascade in 
the  form  of  a  “concept  map”  of  propositions,  such  as  “Core  Ecosystem  Processes  produce  Beneficial  Ecosystem  Processes,”  
and  “Beneficial  Ecosystem  Processes  combine  (with  human appreciation of natural systems) to define Ecosystem  Benefits.”  
(Follow the arrows to read other propositions. In this concept map, solid lines represent tangible, biophysical, or economic 
connections and dashed lines represent information flows.) 

 
FIGURE 2: ECOSYSTEM SERVICES, WITH FEEDBACK LOOPS 

In addition to the relationships depicted in Figure 1, the concept map illustrates what comes next: the consumption or 
realization of ecosystem services both enhances human well-being and affects core and beneficial ecosystem processes. 

For example, human well-being informs both our appreciation of natural systems (drinking water makes us appreciate clean 
water, for example) and our actions to conserve or enhance the underlying conditions (dubbed critical natural capital) that 
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keep ecosystem processes going (Farley, 2012). Those actions may include the creation of market incentives or other 
initiatives to support core and beneficial ecosystem processes directly or to address stressors that damage them. 

It is worth adding this complexity to our mental map of ecosystem services for two reasons. One is that Figure 1, which is 
typical of most diagrams intended to illustrate the ecosystems services concept, leaves out important feedback loops from 
the consumption of ecosystem services back to the condition of ecosystems that make further consumption possible. As 
much  as  we’d  like  for  ecosystem  services  to  become  never-ending fountains of human happiness, they are invariably parts 
of complex systems that we can all too easily damage.  We  have  to  be  willing  to  “give  something  back”  to  sustain  those  
services. 

The second reason is to place the Clean Water Blueprint and other remedial actions squarely within that system. They 
should be understood as necessary elements in the positive feedback loop from ecosystem benefits through actions all the 
way back to a better chance for the ecosystem benefits to continue.  

SELECT  ECOSYSTEM  SERVICES:  RELATION  TO  THE  BLUEPRINT 
Studies focused on valuing natural capital often include as many as twenty or more different ecosystem service categories 
(See, for example, Costanza et al. [1997], Esposito et al. [2011], Swedeen and Pittman [Swedeen & Pittman, 2007], and 
Flores et al. [2013].) In the context of the Blueprint and Chesapeake Bay water quality, however, we focus on eight 
ecosystem services of greatest relevance: food production (crops, livestock, and fish), climate stability, air pollution 
treatment, water supply, water regulation, waste treatment, aesthetics, and recreation. Table 1, below, lists and briefly 
describes these ecosystem services and the land uses in the Chesapeake region that provide them. 

TABLE 1: ECOSYSTEM SERVICES SELECTED FOR BENEFIT ESTIMATIONA 

Water Supply:  Filtering, retention, storage, and delivery of fresh water—both quality and quantity—for drinking, irrigation, industrial processes, 
hydroelectric generation, and other uses. 

Chesapeake land uses that provide this ecosystem service: Forest, Open water, Wetland  

Water Flow Regulation:  Modulation by land cover of the timing of runoff and river discharge, resulting in less severe drought, flooding, and other 
consequences of too much or too little water available at the wrong time or place. 

Chesapeake land uses that provide this ecosystem service: Forest, Urban open, Wetland, Urban Other 

Waste Treatment:  Removal or breakdown of nutrients and other chemicals by vegetation, microbes, and other organisms, resulting in fewer, less toxic, 
and/or lower volumes of pollutants in the system. 

Chesapeake land uses that provide this ecosystem service: Forest, Open water, Wetland  

Air Pollution Treatment:  Purification of air through the absorption and filtering of airborne pollutants by trees and other vegetation, yielding cleaner, 
more breathable air (reduction of NOx, SOx, CO2), reduced illness, and an improved quality of life. (Note: Economists more commonly call this service 
“Gas  Regulation.”)     

Chesapeake land uses that provide this ecosystem service: Forest, Urban open, Wetland  

Food Production:  The harvest of agricultural produce, including crops, livestock, and livestock by-products; the food value of hunting, fishing, etc.; and 
the value of wild-caught and aquaculture-produced fin fish and shellfish. 

Chesapeake land uses that provide this ecosystem service: Agriculture, Open water, Wetland 

Climate Stability:  Influence of land cover and biologically mediated processes on maintaining a favorable climate, promoting human health, crop 
productivity, recreation, and other services. 

Chesapeake land uses that provide this ecosystem service: Forest, Urban open, Wetland 

Aesthetic Value: The role that beautiful, healthy natural areas play in attracting people to live, work, and recreate in a region.  

Chesapeake land uses that provide this ecosystem service: Agriculture, Forest, Open water, Urban open, Wetland, Other 

Recreation: The availability of a variety of safe and pleasant landscapes—such as clean water and healthy shorelines—that encourage ecotourism, 
outdoor sports, fishing, wildlife watching, etc. 

Chesapeake land uses that provide this ecosystem service: Agriculture, Forest, Open water, Urban open, Wetland, Other 

A. (Balmford et al., 2010, 2013; R Costanza et al., 1997; Reid et al., 2005) 

The following are examples of how these ecosystem services play out in the Chesapeake region and explanations of each 
service’s  connection  to  the  Blueprint.   
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Food  Production 
In 1940, H.L. Mencken  called  the  Chesapeake  Bay  an  “immense protein factory,” highlighting the food production capacity 
of the Bay and its tidal waters. Though some species, such as oysters, have declined markedly since then, the  Chesapeake’s  
fisheries industry, including both shellfish and finfish, is still significant. For example, in 2012, the oyster harvest in Maryland 
and Virginia was 1.8 million pounds, the commercial blue crab harvest from the Bay and its tributaries was estimated at 60 
million pounds, and the commercial catch for striped bass was roughly 4.7 million pounds (Chesapeake Bay Stock 
Assessment Committee, 2013; NOAA, 2014).  

Agricultural lands account for approximately 22% of the acres in the Chesapeake watershed (US EPA, 2010) and the value of 
Chesapeake Bay region agricultural sales in 2007 was about $9.5 billion—24% from crops and 76% from livestock (U.S. 
Department of Agriculture, 2007). In addition, the rivers, streams, and wetlands throughout the watershed also provide 
food to residents of the Bay watershed primarily through opportunities for fishing and hunting.  

Connection to the Blueprint: In the tidal areas of the Chesapeake Bay, improvements in dissolved oxygen (DO) and 
underwater grasses mean cleaner water that is more conducive to finfish and shellfish production. For example, DO 
concentrations have been associated with blue crab harvests (Johan A. Mistiaen, 2003), disease resistance in oysters (R. S. 
Anderson, Brubacher, Calvo, Unger, & Burreson, 1998), and more recently with the number and catch rates of demersal fish 
species in the Chesapeake Bay (Buchheister, Bonzek, Gartland, & Latour, 2013). Increases in DO will also lead to greater 
benthic biomass production which in turn provides food for upper trophic level species like crabs and fish (Diaz, Rabalais, & 
Breitburg, 2012). Underwater grasses are critical to protect blue crabs and larval finfish from predation (Beck et al., 2001; 
Heck, Hays, & Orth, 2003).  

Implementing the Best Management Practices (BMPs) called for in the Blueprint means more fertile and productive 
agricultural land. For example, increased implementation of practices like conservation tillage and cover crops will lead to 
better soil water retention, making cropland more productive and less susceptible to damage from droughts. A study in 
Pennsylvania found that under severe drought conditions, crops grown with these practices out-yielded conventionally 
grown crops by 70-90% (Lotter, Seidel, & Liebhardt, 2003). To the contrary, moderately eroded soils are capable of 
absorbing only seven-44% of the total rain that falls on a field.  As a result, eroded soils exhibit significant reductions in crop 
productivity (Pimentel et al., 2003). Many conservation practices also build soil organic matter, which has a significant 
positive effect on crop yields (Pimentel et al., 2003). Finally, healthier streams and wetlands also add to food production 
benefits.  

Water  Supply   
Various habitats within the Chesapeake watershed help filter, retain, and store freshwater, contributing to both the 
quantity and the quality of our water supply. Forests and other vegetation filter rain into ground water and surface 
waterways from which residents of the Chesapeake watershed receive water for drinking, agriculture, and industry. 
Approximately 75% of the people living in the Bay watershed rely on surface water supplies for their drinking water 
(Sprague, Burke, Clagett, & Todd, 2006). For example, the Washington Aqueduct produces drinking water for approximately 
one million people in the District of Columbia metropolitan area by pulling and treating water from the Potomac River, 
removing roughly 10.5 million pounds of sediment annually (Sutherland & Pennington, 1999).   

Connection to the Blueprint: One way to understand the economic value of protecting and enhancing the habitats that 
protect these drinking water sources is to compare it to the cost of building and maintaining water supply and treatment 
facilities. An EPA study of drinking water source protection efforts concluded that for every dollar spent on source water 
protection, an average of $27 is saved in water treatment costs (Groundwater Protection Council, 2007). 

The Blueprint will result in more land retained in land uses in which water retention, filtering, and aquifer recharge are 
effective (forests, urban open space). Implementation of Best Management Practices (BMPs) on urban and agricultural 
lands will increase infiltration and groundwater recharge and reduce sediment load. Less sediment and other pollutants 
reaching water supplies means cleaner drinking and processed water and reduced water treatment costs for residential and 
industrial users, including breweries and soft drink and water bottlers.  
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Water  Flow  Regulation   
The amount and timing of water flow in the rivers and streams that feed the Chesapeake Bay depends, in large part, on the 
storage capacity of the watershed. Impervious surfaces like roads, rooftops, and sidewalks stop precipitation from 
infiltrating into the soil. Instead, the rainwater washes rapidly into storm drains and stream channels. These high peak flows 
contribute to flooding and erosion of stream banks, which add additional pollution to the region’s  waterways. In addition, 
the same process that causes flooding during rain events leaves the stream dry during other times of the year. In the Bay 
region, groundwater contributes a high percentage of stream flow (Lindsey et al., 2003). Thus, if rain is not allowed to 
percolate into the soil to recharge groundwater, stream flows will be lower, especially during dry times. For example, a 
study of the Gwynns Falls watershed in Baltimore indicated that heavily forested areas reduced total runoff by as much as 
26% and increased the low-flow volume of streams by up to 13% (Neville, 1996). 

Connection to the Blueprint: Increases in forest cover, streamside grasses, and forests, and the implementation of urban 
practices focused on infiltration and retaining natural hydrology will mean the landscape will have greater capacity to 
absorb and then slowly release water into streams and rivers and the Chesapeake Bay. This increase in water regulation 
capacity will mean reduced flood damage and more natural stream flows.  

For  example,  Maryland’s  Montgomery  County  has  implemented  over 400 green infrastructure projects, which include 
increased tree canopy, extensive rain gardens, infiltration practices, rain barrels, and restored wetlands that are capable of 
reducing polluted runoff volumes by 21.6 million to 34.6 million gallons a year. Additional stormwater mitigation called for 
by  the  Blueprint  would  reduce  the  volume  of  urban  runoff  entering  the  county’s  waterways  by  about  5.1  billion  gallons  a  
year, potentially decreasing the severity of flooding events for county residents (ECONorthwest, 2011). In addition, 
reductions in sediment loads and the restoration of normal stream flows improve aquatic habitats and fish populations.  
See, for example, Poff et al. (1997) 

Waste  Treatment   
In the tidal portions of the Chesapeake Bay, wetlands, underwater grasses, oysters, and other sedentary biota play a crucial 
role in removing nitrogen, sediment, and/or phosphorus from the water. For example, marshes of the tidal fresh portions of 
the Patuxent River remove about 46% and 74% of the total nitrogen and phosphorus inputs, respectively (Boynton et al., 
2008). The pollution removal capacity of oysters is widely acknowledged. Oysters indirectly remove nitrogen and 
phosphorus by consuming particulate organic matter and algae from the water column (Newell, Fisher, Holyoke, & 
Cornwell, 2005). In addition, some of the nutrients are deposited by the oysters on the surface of sediments and under the 
right conditions, the nitrogen can be transformed via microbial-mediated processes into nitrogen gas that is no longer 
available for algae growth (Higgins, Stephenson, & Brown, 2011). In addition, microorganisms in sediments and mudflats 
can also breakdown human and animal wastes and even detoxify chemicals, such as petroleum products. 

In the non-tidal portions of the Bay regions, forests and wetlands are particularly effective at capturing and transforming 
nitrogen and other pollutants into less harmful forms. In addition, not only do forest buffers filter and prevent pollutants 
from entering small streams, they also enhance the in-stream processing of pollutants, thereby reducing their impact on 
downstream rivers and estuaries (Sweeney et al., 2004). 

Connection to the Blueprint: Increased dissolved oxygen and underwater grasses result in more effective nutrient cycling 
and regulation in the tidal parts of the Bay. For example, Kemp et al. (2005) estimate that if underwater grasses in the 
upper Bay were restored to historic levels, they would remove roughly 45% of the current nitrogen inputs to that area. 
Indirect benefits of increased oyster production also will contribute to enhanced processing and removal of particulates and 
nitrogen.  Maintaining and improving the health of forests, wetlands, and streams throughout the watershed will increase 
their ability to process and transform nitrogen and other pollutants. Furthermore, increases in streamside grasses and 
forests and the implementation of urban practices like green roofs and rain gardens will mean greater pollutant removal 
and processing, not just for nutrients and sediments, but also for other contaminants like agricultural pesticides, petroleum 
products, and bacteria.  

Air  Pollution  Treatment 
Air Pollution Treatment refers to the role that ecosystems play in absorbing and processing air pollutants, such as nitrogen 
oxides, sulfur dioxide, particulates, and carbon dioxide. Trees are particularly effective at removing airborne pollutants. For 
example, the urban tree canopy in Washington, D.C., covers less than a third of the city, yet removes an amount of 
particulate matter each year equal to more than 300,000 automobiles (Novak, Hoehn, Crane, Walton, & Stevens, 2006). 
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Scientists estimate that the 1.2 million acres of urban forest in the Chesapeake region collectively remove approximately 
42,700 metric tons of pollutants annually (Sprague et al., 2006). 

Sequestration of carbon dioxide is also an important function of the region’s  habitats. It is estimated that Chesapeake 
forests are currently storing a net 17 million metric tons of carbon annually (Sprague et al., 2006). In addition, agricultural 
practices like conservation tillage, cover crops, and riparian buffers are all effective at removing carbon dioxide from the 
atmosphere. Agriculture as a whole, however, is a net emitter of many gases, so there are no values for agricultural air 
pollution treatment ecosystem services counted in this study. A recent study has also documented the significant carbon 
sequestration benefits of tidal wetlands (Needelman et al., 2012). 

Connection to the Blueprint: Healthier forests and wetlands are able to better absorb and process airborne pollutants and 
increase carbon sequestration rates (Bytnerowicz et al., 2013). Increased tree canopy, particularly in urban areas, will lead 
to improved air quality, increased public health benefits, and reduced health care costs. For example, the estimated value 
to Lancaster City, Pennsylvania and its citizens of reduced air pollutant-related impacts is more than one million dollars per 
year from implementing practices in their Green Infrastructure Plan (US EPA, 2010, 2014). Implementation of agricultural 
BMPs at levels similar to what is called for in the Blueprint would reduce greenhouse gas emissions by approximately 4.8 
million metric tons of carbon dioxide equivalents annually—comparable to the carbon dioxide emissions from residential 
electricity use across Delaware (Chesapeake Bay Foundation, 2007), though as noted above, we did not include or quantify 
these benefits in our assessment.   

Climate  Stability 
Climate stability refers to the influence that land cover and biologically mediated processes have on maintaining a stable 
environment. For example, in urban areas, natural filters to reduce polluted runoff and trees helps reduce the “heat  island”  
effect by reducing the amount of paved surfaces that trap the most heat. For example, differences in summer temperatures 
between inner-city Baltimore and a rural wooded area are commonly seven degrees Celsius or more (Heisler, 1986).  In 
addition, trees in both urban and suburban areas provide shade and act as wind breaks to surrounding dwellings, reduce 
indoor temperatures in the summer, and increase them in the winter, and in doing so reduce energy use and costs. Shaded 
houses can have 20-25% lower annual energy costs than the same houses without trees. In Washington, D.C., the urban 
tree canopy saves city residents approximately $2.6 million dollars per year in energy costs (Novak et al., 2006). At a 
broader scale, land in forests, wetlands and agriculture provide similar environmental benefits of moderating our climate.  

Connection to Blueprint:  Implementation of the Blueprint will increase and improve habitats that can absorb and more 
slowly release solar radiation and increase evapotranspiration that helps with cooling. In urban and suburban areas, more 
tree canopy, open spaces, and green roofs will reduce the heat island effect and lower air temperatures, resulting in lower 
energy use associated with space cooling and human health benefits, such as reductions in the number of heat-related 
illnesses and associated health care costs (Philadelphia Water Department, 2009). For example, implementation of the City 
of  Lancaster’s  Green  Infrastructure  Plan is estimated to have an annual benefit in reduced energy use of $2.4 million dollars 
per year (US EPA, 2014). This figure represents the potential monetary savings for Lancaster and its residents in reduced 
heating and cooling needs. 

Aesthetic  Value 
Aesthetic value as an ecosystem service refers to our appreciation of and attraction to natural and pastoral land and scenic 
waterways (de Groot, Wilson, & Boumans, 2002). The existence and popularity of state parks, state forests, and officially 
designated scenic roads and pullouts in the Chesapeake Bay watershed attest to the social importance of this service.  

More importantly from an economic perspective, beautiful, healthy natural areas attract people to live, work, and recreate 
in a region, and water bodies in particular are population magnets. With more than 100,000 streams and rivers, the 
Chesapeake Bay region is dominated by its waterways; it is said that one can reach a Bay tributary in less than 15 minutes 
from nearly everywhere in the 64,000-square-mile watershed. Kildow (2006) provides a literature survey of studies that link 
estuaries and other water bodies, including commercial harbors, to high property values.  

Healthy forested areas also provide quantifiable aesthetic benefits for individuals and communities. A study in Baltimore, 
Maryland, for example, revealed that as the percent of tree canopy cover increases, residents are more satisfied with their 
community. The study also showed that when neighborhood forest cover is below 15%, more than half of the residents 
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consider moving away (Grove, 2004). Other studies substantiate the idea that degraded landscapes are associated with 
economic decline (Power, 1996). 

Connection to the Blueprint:  Reduced sedimentation, increased dissolved oxygen, and increased underwater grasses and 
water clarity indicate enhanced habitat health and aesthetics in tidal areas. These improvements will lead to greater 
enjoyment by residents and visitors of scenery in the Bay region, which translates into higher property values, more future 
visits, and other positive outcomes. For example, good water clarity has been shown to increase average housing value by 
four to five percent or thousands of dollars per household (Jentes Banicki, 2006; Poor, Pessagno, & Paul, 2007). In 
Delaware, property values within 1,000 feet of the shore have been projected to increase by eight percent due to improved 
water quality in the Chesapeake Bay watershed (Kauffmann, Gerald, Homsey, Anadrew, McVey, Erin, Mack, Stacey, & 
Chatterson, Sarah, 2011). On the whole, the Chesapeake Bay and its tidal tributaries have 11,684 miles of shoreline—more 
than the entire U.S. West Coast.  

Increased urban green space creates more pleasant scenery and a more desirable living environment; several studies have 
demonstrated the economic value of this improvement (reviewed in McConnell and Walls, 2005). For example, the City of 
Philadelphia estimates that installation of green storm water infrastructure in the city will raise property values two to five 
percent, generating $390 million over the next 40 years in increased values for homes near green spaces (Philadelphia 
Water Department, 2009). 

Recreation 
People travel to beautiful places for vacation, but they also engage in specific activities associated with the ecosystems in 
those places. The Chesapeake Bay region’s residents and visitors enjoy recreational fishing; swimming; hunting; boating 
under sail, power, and paddle; bird watching; and hiking. In 2009, tourists spent $58 billion in Maryland, Pennsylvania, 
Virginia, and Washington D.C., directly supporting approximately 600,000 jobs and contributing $14.9 billion in labor 
income and $9.4 billion in taxes. Tourists spent $25.7 billion in the Chesapeake Bay Gateways Network region alone (Stynes, 
2012). 

Similarly, in 2001  more  than  15  million  people  fished,  hunted,  or  viewed  wildlife  in  the  Chesapeake  region’s  forests  and  
contributed approximately three billion dollars to the regional economy (Sprague et al., 2006). In Virginia alone, it is 
estimated that 642,297 people use the Virginia Birding and Wildlife Trail annually and the total economic effect of the trail 
in 2008 was around $8.6 million (Rosenberger & Convery, 2008). 

Connection to the Blueprint: Improvements to water quality in the tidal portions of the Chesapeake will result in greater 
enjoyment of and participation in recreational activities such as boating, kayaking, fishing, and swimming (Bockstael, 
McConnell, & Strand, 1988). For example, Lipton and Hicks (2003) found that an increase in dissolved oxygen will 
dramatically increase striped bass catch rates, resulting in more pleasurable fishing experiences. A Virginia study found that 
“water  quality,  fishing  quality, and  other  environmental  factors”  ranked  among  the  most  important criteria that influence 
boaters’ decisions on where to keep their boats (Doug Lipton, Murray, & Kirkley, 2009). 

BMP implementation on land and improved water quality would indicate more biologically productive natural areas. 
Cleaner, more productive landscapes provide a higher quality recreational experience. Riparian buffers and wetlands 
contribute to recreational fishing services by providing improved aquatic habitat and healthier aquatic communities that 
lead  to  increased  fishing  opportunities  for  gamefish  popular  among  the  region’s  anglers  (Hairston-Strang,  2010;  “The  
restoration  of  Lititz  Run:  Despite  black  marks,  waterway  benefits  from  groundbreaking  inroads  by  a  local  coalition,”  2008). 
Maintaining and improving forest health will also increase opportunities for hunting and bird-watching (Sprague et al., 
2006). 

ECOSYSTEM  SERVICE  BENEFIT  ESTIMATION 
As noted above, the economic benefit associated with critical natural capital depends on the health—and therefore the 
productivity—of that capital. In these terms, the purpose of the Blueprint is to improve the productivity of the 
Chesapeake’s  critical natural capital. Accordingly, our estimation of the economic benefits of the Blueprint are rooted in 
anticipated changes in the underlying health of that natural capital, as well as the increased acres of forest, wetlands, and 
other natural habitats that will result from implementing the Blueprint. Attainment of the goals of the Blueprint will directly 
produce benefits associated with cleaner water, including more productive fisheries and an improved source of aesthetic 
and recreational value. In addition, because the Blueprint will be achieved through a variety of actions to protect and 
restore critical natural capital (Table 1)—such as expanded forest coverage, improved streetscapes, restored wetlands, and 
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more input-efficient agriculture—the  Blueprint  will  also  generate  “co-benefits”  like  improved  air  quality,  reduced  flooding,  
and increased food production that also have economic benefits. 

Economists have developed widely used methods to estimate the dollar value of ecosystem services and/or natural capital. 
The most widely known example was a study by Costanza et al. (1997) that valued the natural capital of the entire world. 
That paper and many others since employ the “benefits  transfer  method”  or  “BTM”  to  establish  a  value  for  the  ecosystem  
services produced or harbored from a particular place.  

As the name implies, BTM takes a benefit estimate calculated for one set of circumstances (a source area) and transfers 
that benefit to another set of reasonably similar circumstances (the subject area). As Batker et al. (2010) put it, the method 
is very much like a real estate appraiser using comparable properties to estimate the market value of the subject property. 
It is also very much like using an existing or established market price, say the price of a bushel of crabs, to estimate the 
value of some number of bushels of crabs to be harvested in the coming week. The  key  is  to  select  “comps”  that  match  the  
circumstances of the subject area as closely as possible. 

Typically, comps are drawn from source studies that estimate the value of various ecosystem services from similar land 
cover  types  (sometimes  called  “biomes”). So, for example, if the source study includes the value of wetlands for recreation, 
one might apply per-acre values from the source wetlands to the number of acres of wetlands in the subject area. 
Furthermore, it is important to use source studies that are from regions with underlying economic, social, and other 
conditions that are similar to the subject area. Due to differences in wealth between countries and regions, for example, 
observed market prices and expressions of willingness to pay (as a substitute for market prices when no market good is 
involved) can vary widely. 

Careful as one may be to select appropriate comps, estimates coming from the benefits transfer method must be 
understood to be an approximation of the true value of ecosystem services in the subject region. It is not the same as 
measuring the biophysical outputs of every acre of the subject area and then determining the willingness to pay for each of 
those outputs3. The latter would be prohibitively expensive, given that our subject area consists of 44 million acres. 
Moreover, even measuring the biophysical outputs would still entail a sort of benefit transfer in that one would apply an 
observed or estimated value-per-unit for some sample of outputs to those outputs estimated for the entire watershed. 

The estimates of ecosystem service value presented below are certainly different from what the actual values would be if 
we could observe and measure them directly. However, we submit that the model and its resulting estimates are useful as 
a first approximation of the magnitude of those benefits. Decision makers and the public need an idea of the value provided 
by the Chesapeake Bay watershed and of the increment to that value that may accrue as a result of implementing the 
Blueprint. 

So, with that caveat, we develop and apply an enhanced version of the benefits transfer method that both uses comparable 
sources of per-acre ecosystem service values and adjusts the estimates to account for differences in per-acre productivity in 
the subject area. 

Methods  Specific  to  This  Study  
Following Esposito et al. (2011) and Esposito (2009), we employ a four-step process to evaluate the ecosystem service value 
of the Chesapeake Bay Watershed and the benefits (increment to value) associated with the Blueprint. These steps are 
described in greater detail below, but in summary, they are: 

1. Assign land and water in the Chesapeake Bay watershed to one of seven land uses (forest, wetlands, open water, 
urban open space, other urban land, agriculture, and other) based on Chesapeake Bay Program data (M. Johnston, 
2014b) and remotely sensed land cover data (Fry, J. et al., 2011). Acreage is taken from spatial tabular data 
covering the seven land uses in 2,862 “land-river segments” (portions of sub-watersheds lying in different 
counties). Land use is estimated for each of three scenarios: Baseline, Blueprint, and Business as Usual,  or  “BAU.” 
In the concept map (Figure 3) on the next page, this step is illustrated by the four boxes and connecting arrows at 
the top left of the map. 

                                                 
3 This  is  the  “production  function”  approach  to  estimating ecosystem service value outlined, for example, in Kareiva et al. 
(2011) 
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2. Establish indicators of baseline ecosystem health/productivity for each river segment (sub-watersheds without 
distinctions for county or state political boundaries) in the watershed to estimate the current value of the 
Chesapeake Bay watershed ecosystem prior to implementing the Blueprint. 
 
For the non-tidal portion of the watershed, our proxy for ecosystem health is derived from an existing index of 
“wildness”  that  reflects  the  relative lack of pollution and other human disturbance for each location in the 
watershed. We compute this proxy at the river segment level of geographic detail.  For the tidal waters of the Bay 
itself, the proxy is the degree to which the river segment has attained the dissolved oxygen (DO) standard. 
 
In the Figure 3 concept map, this step appears as yellow boxes near the top center. 

3. To account for the effect of actions taken (or not taken) under the states’  Watershed Implementation Plans (WIPs) 
that would likely improve ecosystem service health/productivity in the Blueprint and BAU scenarios, we make one 
of the following adjustments, depending on the river segment in question. 

a. Adjust baseline health according to modeled changes in pollutant (nitrogen, phosphorus, and sediment) 
according to this formula. This is the approach for the non-tidal portion of the watershed. 

b. Apply  the  respective  scenario’s  dissolved  oxygen  attainment,  replacing  the  baseline  health  number.  For  
the Blueprint scenario, attainment is expected to be 100%.  For the BAU scenario, we assume, 
conservatively, no further deterioration in DO, and use the same level of attainment as in the Baseline 
scenario.  
 
This part of the process is illustrated by the red, yellow, and orange boxes in Figure 3. 

4. Calculate the value of eight ecosystem services in each scenario (Baseline, Blueprint, and BAU) by multiplying land 
area (acres) times the relevant proxy for health/productivity, times dollars-per-acre-per-year for those services. 
 
By comparing the Baseline to the Blueprint results we obtain an estimate of the value of natural capital that would 
be gained relative to current conditions. And by comparing the Blueprint to BAU results, we obtain an estimate of 
the value of Blueprint once implemented and effective, compared to what the value would be if nothing further is 
done. 
 
The five lowermost boxes in Figure 3 represent this part of the procedure. 
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Assigning Land to Ecosystem Types, or Land Uses 

As indicated in the summary above, the first step in the process is to determine the area in the seven land use groups or 
habitat types in the Chesapeake Bay watershed. This determination is made using two sources of data. Both sources begin 
with remotely sensed data from the National Land Cover Database (NLCD) (Fry, J. et al., 2011). These satellite data provide 
an image of land in up to 21 land cover types, 15 of which are present in the Chesapeake Bay Watershed (see Figure 4). 

In addition, to address shortcomings in NLCD data as outlined by Chesapeake Bay Program (CBP) staff (Claggett, 2013), the 
Chesapeake Bay Land Change Model (CBLCM) incorporates county-level data from other sources and estimates land use in 
31 detailed land uses in four broad categories: Agricultural, Forest, Urban, and Open Water (M. Johnston, 2014a).  

Using the CBLCM, CBP staff provided us with estimates of land use and pollutant loadings for three scenarios, as follows. 

Baseline: Land use as it was estimated in 2009, with various best management practices (BMPs) then in place.4 

Blueprint: Land use projections to 2025, based on historic trends and with the 2009 same BMPs still in place plus full 
implementation of the Phase II Watershed Implementation Plans developed by the States pursuant to the Blueprint. 

Business as Usual (BAU): Land use projections to 2025, based on historic trends and with practices expected to be 
implemented with or without the Blueprint due to state or federal regulations. These measures include upgrades to 

wastewater treatment plants and practices 
called for in storm water and concentrated 
animal feeding operation permits.  

For the acreage estimates and projections 
in these scenarios, we made several 
adjustments. 

First, the CBLCM covers only the portion of 
the watershed that is either terrestrial or, if 
open water, upstream from the tidal 
portion of the Bay and its tributaries. We 
therefore simply added these areas back in 
based on GIS layers provided by USGS 
(Claggett, 2013). 

Second, because the CBP classification 
places  the  NLCD’s  emergent  wetlands  and  
other land (consisting of barren land like 
shorelines, rock outcrops, etc.) in the 
“forest”  category,  and  because  these  two  
land cover types can have very different 
ecosystem service profiles, we re-created 
“wetland”  and  “other”  land  categories.  For  
this we turned to our own analysis of the 
NLCD data and calculated number of acres 
in each river segment that is herbaceous 
wetland (NLCD class 95), and the sum of 
acres that are either barren land or 
unconsolidated shore (NLCD classes 31 and 
32). These latter classes constitute our 
“other”  category. We then calculated the  
percentage  of  CBLCM’s  “forest”  acreage  
that the NLCD acreages represent and 

                                                 
4 Note  that  this  is  the  “baseline”  for  this  study  only.    Other  periods  may  serve  or  be  referenced  as  the  “baselines”  for  Bay  
water quality or its attendant human or economic value elsewhere. 
 

FIGURE 4: NLCD LAND CLASSIFICATION 
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multiplied the wetland percentage times “forest”  acreage  to  get  wetland  acreage  and  the  “other”  percentage  times  
“forest”  acreage  to  get  other  acreage. Finally, we subtracted the calculated wetland and other  acreage from the original 
“forest”  acreage  to  get  a  new  forest acreage. In this way we retained a total acreage that is consistent with that of the 
CBLCM outputs while taking advantage of the finer detail available in the NLCD data. 

TABLE 2: LAND COVER / LAND USE TRANSLATION 

NLCD Land Cover Class (Satellite Imagery) CBP Land Use 
from 

CBLCMA 

Revised Land Use 
Used in 

Present Study 
11 Open Water Open Water Open Water 
21 Developed, Open Space Urban Urban OpenB 

22 Developed, Low Intensity Urban Urban Other 
23 Developed, Medium Intensity Urban Urban Other 
24 Developed, High Intensity Urban Urban Other 
31 Barren Land Forest OtherC 
41 Deciduous Forest Forest Forest 
42 Evergreen Forest Forest Forest 
43 Mixed Forest Forest Forest 
52 Shrub/Scrub Forest Forest 
71 Grassland/Herbaceous Forest Forest 
81 Pasture/Hay Agriculture Agriculture 
82 Cultivated Crops Agriculture Agriculture 
90 Woody Wetlands Forest Forest 
95 Emergent Herbaceous Wetlands Forest WetlandC 

Notes: 
A. CBLCM uses data beyond the NLCD imagery to assign land to these land uses. 
B. As explained in the text, acreage in this land use are the result of re-interpreting pervious urban land as urban 

open space. 
C. Acres in these land uses are calculated percentages, based on NLCD, multiplied by forest acreage from the CBLCM. 

Forest acreage also adjusted. 
 

Third  and  finally,  we  split  the  CBLCM’s  urban acreage into urban  open  space  (or  “Urban  Open”)  and  other  urban  land  (or 
“Urban  Other”). The reason is that most of the dollars-per-acre estimates of natural capital value for urban areas come 
from studies of urban open space, not urban areas in general. Applying those per-acre estimates would produce over-
estimates of the ecosystem service value of urban areas. To  make  this  adjustment,  we  simply  counted  the  CBLCM’s  
estimates of  “pervious  developed”  area  as urban open space and then took the balance of urban land to be “Urban  Other.”   

In the end, estimates of the surface area in seven land use or habitat categories were obtained: forest, wetlands, open 
water, urban open space, urban other, agriculture, and other land. The other land category is mostly barren land. Our forest 
habitat  category  includes  “scrub/shrub”  habitat  as  well  as  grasslands,  and this is consistent with the Bay Program 
classification of these habitats. Part of the thinking is these areas frequently convert to forest. Historically, roughly 95% of 
the watershed was forested. The area in each habitat type was calculated for each of 973 “river  segments”  in  the  
Chesapeake Bay Watershed. Figure 5 shows a sample of the final land use distribution for Albemarle County, Virginia. The 
background shows NLCD data as re-classified into the Chesapeake Bay Program categories, and the pie charts indicate the 
percentage of land in each category in each the river segments. 
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Baseline Ecosystem Health 

Estimates of the value of natural capital typically rely 
on a per-unit-area value for the various services 
provided. These estimates often reflect ideal or pristine 
conditions and not the actual health of the study area, 
where habitats and the associated ecosystem services 
productivity may be degraded by human activities. 
Consequently, our approach involves discounting 
ecosystem service values for the baseline condition 
using proxies for habitat condition or health.  

For  the  upland  areas,  a  variation  of  the  “index  of  
wildness”  developed  by  Aplet,  Wilbert, and Thomson 
(2000) is used. For a detailed description of the 
conceptual basis for the wildness index and its 
component measures, please see Aplet (1999);, Aplet, 
Wilbert, and Morton (2005); and Aplet, Wilbert, and 
Thomson (2000). Briefly, however, and for the 
purposes of this study, we use data supplied by Wilbert 
(2013) for the following landscape attributes: 
 

1. Solitude, measured by the population density of 
census block groups. 

2. Remoteness, measured by the distance of 210-meter 
grid cell to the nearest class primary, secondary, or 
tertiary road. 

3. Lack of pollution, measured by a combination of the 
darkness of the night sky, degree of stream impairment, 
and county-level cancer risk. 

Each of these indicators is then turned into an index, with one being the most impacted and five being the least impacted. 
Summing these across the three indicators, the least healthy areas would score a three out of a possible 15, or 20%, and the 
healthiest areas would score a 15 or 100%. The average of this health proxy indicator was calculated for habitats in each of 
the upland segments. Figure 6 displays this index for the non-tidal river segments. As would be expected from the measures 
used, areas closest to cities tend to be the least healthy (indicated by the lightest green in the map), while areas farther 
away from large concentrations of people and built infrastructure tend to be more healthy. 

We believe that this index, which indicates the degree to which a given point on the map is affected by human activity, 
supplies a fair proxy for the relative ability of those places to produce ecosystem services. Note, however, that the 
conversion of the ordinal wildness indicators into this continuous variable does mean that the lowest possible health index 
value is actually 0.200, rather than zero. We have chosen to use this truncated distribution and live with the fact that we 
know that for some river segments, this measure of health may be too generous rather to arbitrarily assign scores of one or 
two to some lower index number. 

FIGURE 5: LAND USE DISTRIBUTION, SHOWING DETAIL FOR 
ALBEMARLE COUNTY, VIRGINIA 
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As a proxy for the relative health of the tidal 
open water segments of the Chesapeake Bay, 
we used dissolved oxygen (DO) levels. 
Specifically, we used the DO criteria assessment 
for the 2009 Chesapeake Watershed Model 
scenario run and applied the methodology that 
CBP uses in their water quality standards 
indicator (US EPA Chesapeake Bay Program, 
2014; US EPA, 2010). There are different DO 
standards for different portions of the water 
column  known  as  “designated  uses,”  including  
92  tidal  segments  containing  the  “open-water”  
habitat,  18  containing  the  “deep-water”  habitat  
and  10  containing  the  “deep-channel”  habitat.    
The approach considers each segment and 
designated use as either pass or fail, when it 
comes to the achievement of the DO standard 
(Shenk, 2014).  For example, if all three 
designated uses apply to a segment and the 
2009 model scenario indicated the segment 
achieved the DO standard in two of the three 
designated uses, our indicator score for that 
segment would be 2/3 or 66%. This indicator for 
the baseline scenario is depicted in shades of 
blue in the map in Figure 6. 
 

Changes in productivity with and without 
the Blueprint 

Implementation of the Blueprint will increase 
the natural capital within the Chesapeake Bay 
watershed. And, as noted above, that increase 
can occur in two complementary ways. First, 
land use can change in such a way that land is 
converted from less ecosystem-service-
productive habitats (intensive agriculture or 

urban areas, for example) to more productive habitats (e.g., forest, wetlands, BMP agriculture, or urban open space), or at 
least that the conversion to less-productive land uses occurs at a slower pace. Second, the various habitat types (e.g., 
forests, agriculture, open water, urban areas) can become healthier as a result of management actions designed to reduce 
nutrient and sediment pollution to the Bay. 

Conversely, failure to implement the Blueprint will mean that more land is converted to uses that produce less ecosystem 
services and result in a loss of natural capital in the Chesapeake region. In addition, increases in pollution loads without the 
Blueprint will degrade habitats and reduce habitat quality and ecosystem services. 

Acreage by land use and scenario for the BAU scenario are obtained from the Chesapeake Bay Land Change Model run as 
described  under  “Assigning Land to Ecosystem Types, or Land Uses,”  above  (M. Johnston, 2014a). As with the baseline or 
current conditions, these projections require adjustment to split out the emergent wetlands from the forests and parse the 
urban land use into open space. Absent projections indicating otherwise, we assume that emergent wetlands will make up 
the  same  portion  of  the  “forest”  land  use  category  in  2025  as  they do today, and we calculate the area in wetlands in 2025 
for the BAU and Blueprint scenarios as [(wetland acres in 2009) / (forest acres in 2009] x (projected forest acres in 2025). 
We  make  a  similar  adjustment  to  estimate  the  acreage  in  the  “Other”  land use category for 2025 in each scenario. 

The second way in which Blueprint implementation will increase natural capital is through improvements in the health (and 
therefore productivity) of land in any land use category. To estimate the relative amount of improvement to the 

FIGURE 6: BASELINE HEALTH/PRODUCTIVITY INDICES 
Note that the tidal and non-tidal indicators are based on different 
metrics, and the breakpoints between shades of color are not the same. 
The health indicator for the tidal portions of the watershed is shown in 
blue.  For the non-tidal portions, the indicator is shown in green. 
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productivity of terrestrial habitats due to implementing the Blueprint, we used expected reductions in sediment, 
phosphorus, and nitrogen loads delivered to the Bay as estimated by the Chesapeake Bay Watershed Model (M. Johnston, 
2014b). For example, if implementation of the Blueprint results in an average 20% reduction in sediment, phosphorus, and 
nitrogen loads in a particular river segment, the production of ecosystem service value in this segment would improve by 
20%.  

We recognize this measure is a proxy for, and not an actual projection of, ecosystem service productivity. Several studies 
have highlighted the ecological benefits of reducing nutrient and sediment loads. For example, productivity of cropland 
increases when sediment erosion is reduced (Pimentel et al., 2003) and less sediment in surface water means reduced 
water treatment costs (Groundwater Protection Council, 2007).  Deegan et al. (2012) found that excess amounts of nutrient 
loading contributes to coastal salt marsh loss.  In addition, the management actions themselves—such as planting of cover 
crops, implementing no-till farming, and adding green infrastructure in urban areas—also have environmental benefits. 
Consequently, we believe that estimates of the outputs of those management changes (i.e., lower pollutant loadings) is as 
good an indicator of improved productivity as would be BMP adoption rates or other measures of changes in the 
management inputs (i.e., BMP implementation).  

For open water in the tidal segments of the watershed, we do not employ an estimate of the change in health/productivity 
in the Blueprint and Business as Usual scenarios, but rather simply apply the expected outcome or endpoint of that change 
in those two scenarios.  For the Blueprint, the goal is 100% attainment, so we assume full health of those waters in the 
Blueprint scenario. 

For the Business as Usual scenario, the productivity of terrestrial habitats was adjusted based on average expected change 
in nitrogen, phosphorus, and sediment loads between 2009 and 2025 that would be expected if the Blueprint were not to 
be implemented. For the tidal segments, we did not have projections of future dissolved oxygen attainment. We therefore 
assume there will be no deterioration in water quality in these tidal segments from current conditions. (This seems unlikely, 
given that nutrient and sediment loading upstream will increase. Our resulting estimates of ecosystem services value in the 
Business as Usual scenario will be higher than would be expected.) 

The next step was to multiply the baseline health by the percentage change to obtain the health (or ecosystem service 
productivity) measure in each of the two future scenarios. For the Blueprint, those changes are positive for most river 
segments, and for Business as Usual they are mostly negative. 
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The Loading-Health Relationship 

We are assuming that we assume the relationship between changes in pollution loading and changes in our 
proxy for land health or ecosystem service productivity is linear—that is, there is a fixed, one-to-one relationship 
between percentage changes in pollutant loading and the health/productivity of the land in a given area. We 
recognize that the actual relationship could show increasing or decreasing marginal changes in productivity, 
depending on the initial health of a particular area and the particular ecosystem service in question. The curve 
describing the relationship might also have different shapes over different ranges—starting out as an increasing 
function at low ranges and flattening out at higher ranges (see Figure 7). Lipton and Kasperski (2006) for 
example, found that the relationship between DO conditions in the Chesapeake Bay and blue crab harvests was 
roughly linear until the DO concentration reached 5 mg/L, above which there was no increase in harvest. 

Ideally one would want to specify a different (and true-to-life) functional form for each combination of 
ecosystem benefit and each indicator of ecosystem 
health. But the existing research results on which to base 
such specifications are still fairly thin. Blue crabs, for 
example, are  but  one  component  of  the  “food”  services  
category, and the available measure of future water 
quality in the tidal segments of the Bay is percent 
attainment, not DO concentration. So even for this well-
studied component of the Bay ecosystem, there is not a 
suitable way of employing what might be a more precise 
functional form of the health-productivity relationship. 
Multiplied by the various components of eight different 
ecosystem benefits and by 971 river segments, each of 
which is starting out at a different point along the 
multiple health-productivity curves, the complexity of 
the quest for greater precision in these estimates is clear. 

Some of these relationships may well be linear 
throughout the range of changes associated with the 
Blueprint and BAU scenarios. Others may be kinked after 
a certain point; still others could be non-linear. We 
recognize that we may be splitting the differences among 
the multitude of (unknown) relationships, and we 

therefore provide a sensitivity analysis below, for a band of possible errors on either side of the outcomes of the 
assumed relationship. 

 

 

 

 

 

 

FIGURE 7: FUNCTIONAL FORMS FOR THE RELATIONSHIP 
BETWEEN CHANGES IN HEALTH AND PRODUCTIVITY 
These curves are for illustration purposes. The true functional 
forms of the various relationships between ecosystem health and 
the productivity of individual ecosystem benefits are unknown. 
They are assumed to be linear and one-to-one (the blue line). 
Other options include linear relationships that are greater than 
one to one (the red lines), less than one to one (grey), non-linear 
(dashed yellow and red lines) varying across the range of changes 
in health (the dashed green line). 
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TABLE 3: SUMMARY OF LAND USE AND HEALTH INDICATORS FOR BASELINE, BLUEPRINT, AND BUSINESS-AS-USUAL 
SCENARIOS 

Model Inputs Scenario 

Baseline (2009) Blueprint  Business as Usual  

Land Use area 
Tidal Segments 
Open Water  

Estimated from GIS and 
National Land Cover 
Database 

No change No change 

Health 
Tidal Segments 
Open Water 

2009 modeled estimates of 
DO attainment 

Improvement to 100% 
attainment of DO criteria  

No change from Baseline 

Land Use Area 
Non-tidal Segments 
All Land Uses 

2009 estimates of land use 
by CBP as part of Blueprint 
development and adjusted 
to separate emergent 
wetlands and other land 
from  CBP’s  “Forest”  
category, and separating 
urban open space from 
other urban areas. 

Projected changes in land 
use by 2025 due to 
Blueprint implementation 
(i.e., with Phase II WIPs) as 
modeled by CBP plus 
adjustments for forests and 
urban open space. 

Projected changes in land 
use by 2025 without Phase 
II WIPs, as modeled by CBP 
plus adjustments for forests 
and urban open space. 

Health 
Non-Tidal Segments 
All Land Uses 

Adjusted for the Index of 
Wildness.  

Baseline habitat condition 
adjusted by the modeled 
percent change in 
projected sediment, 
nitrogen, and phosphorus 
loads delivered to the Bay 
from each segment, 
assuming Blueprint is fully 
implemented.  

Baseline habitat condition 
adjusted by the modeled 
percent change in 
projected sediment, 
nitrogen, and phosphorus 
loads delivered to the Bay 
from each segment, 
assuming no Phase II WIPs. 

 

Table 3 summarizes the origin and our derivation of the key land area and health inputs to our model, and Table 4 displays 
the results in terms of acreage in each land use and average health, on a zero-to-one scale, under each scenario. In general 
and relative to the baseline, implementing the Blueprint would result in more forested acreage, a smaller decrease in 
wetlands, and a smaller increase in urban area than would occur under a Business as Usual scenario. 

Note that while overall forested acreage increases in the Blueprint scenario, total acreage in the wetland and other 
categories, which are calculated as a percentage of forest acres, decreases. This change occurs because the percentages are 
calculated for each river segment, and, as it happens, the percentage of forest land reclassified as wetlands or other is 
slightly greater for the segments that lose forest acreage then for those that gain forest acreage. 
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TABLE 4: SUMMARY OF ACREAGE (BY LAND USE) AND HEALTH INDICATOR FOR TIDAL AND NON-TIDAL SEGMENTS IN 
THREE SCENARIOS 

 Baseline (2009) Blueprint Business as Usual 

Tidal Segments  
(Health Indicator, 0-1 scale) 

 0.709   1.000   0.709  

Open Water (Acres)  2,902,290   2,902,290   2,902,290  

Non-Tidal Segments  
(Health Indicator, 0-1 scale) 

 0.533   0.606   0.494  

Agriculture (Acres)  9,115,604   8,508,590   8,937,770  

Forest (Acres)  26,087,310   26,146,565   25,599,783  

Open Water (Acres)  418,638   418,638   418,638  

Urban Open (Acres)  1,827,581   2,138,186   2,157,705  

Urban Other (Acres)  3,272,272   3,519,108   3,627,798  

Wetland (Acres)  245,895   238,374   232,321  

Other (Acres)  130,960   128,794   124,252  

 

Translating to Monetary Values 

Finally, we reach the fourth step in which ecosystem service productivity per unit of land or water is converted to a value 
(i.e., dollars per year). Data for these calculations come from a custom dataset drawn from the Earth  Economics’  Ecosystem 
Valuation Toolkit (Briceno & Klochmer, 2014). The toolkit includes an extensive database of ecosystem service valuation 
studies from which Earth Economics has extracted studies most applicable to the Chesapeake Bay region. These studies 
provide estimates of ecosystem service benefits for each habitat expressed as dollars per acre per year. From the more 
than 2,000 studies included in the database, estimates selected are those that are the best fit for the Chesapeake Bay 
region, either because the underlying studies were done in the Bay region itself or for a similar estuarine system, or 
because they come from studies of ecosystem services that are similar to those produced in the Bay watershed (e.g. 
shellfish or water-based recreation) (Briceno & Klochmer, 2014). Not all land use ecosystem services combinations were 
covered in the database, however, so to fill some of the gaps, we turned to other tools,  including  the  “The  Economics of 
Ecosystems  and  Biodiversity”  (TEEB)  project  and  studies  of  the  value  of  natural  systems  in  or  near  the  Chesapeake  Bay  
watershed (Kauffman, Homsey, Chatterson, McVey, & Mack, 2011; Kauffmann, Gerald et al., 2011; Van der Ploeg, Wang, 
Gebre Weldmichael, & De Groot, 2010; Weber, 2007).  

Note that where a range of values for each habitat was available, we elected to use the minimum value, which produced a 
conservative estimate of baseline value as well as of the benefit from implementing the Blueprint. The selected values and 
the full  list  of  “candidate”  values  from  which  we  made these selections is included as Appendix A to this report. 
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Putting  It   All   Together  
With the steps complete above, we now estimate the annual ecosystem service value for each scenario according to this 
general formula:   

ESV   = ∑ [(𝐴𝑐𝑟𝑒𝑠௝,௞) × (Baseline  Health௞) ×௜,௝,௞

(𝐻𝑒𝑎𝑙𝑡ℎ  𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡௞) × ($/𝑎𝑐𝑟𝑒/𝑦𝑒𝑎𝑟)௜,௝] 
Where: 

Acresj,k the  number  of  acres  land  use  (j)  in  river  segment  (k) 
(From  Chesapeake  Bay  model  output  are  remotely  sensed  data) 

Baseline  healthk is  the  initial  health  proxy  for  river  segment  (k)   
(from  DO  attainment  for  tidal  segments,  and  from  the  modified  wildness  
index  for  non-­‐tidal  segments) 

Health  Adjustmentk is  an  adjustment  to  take  into  account  changes  to  pollutant  loading  for  
non-­‐tidal  segments  between  the  baseline  and  2025  scenarios  (i.e.,  
Blueprint  and  Business-­‐as-­‐Usual),  applied  for  each  river  segment  (k).  (See  
details  below.)  (This  adjustment  applies  to  non-­‐tidal  segments  only5.) 

($/acre/year)i,j is  the  minimum  of  the  dollar  value  of  each  ecosystem  service  (i)  provided  
from  each  land  use  (j)  each  year.  These  values  are  drawn  from  the  
Ecosystem  Valuation  Toolkit  and  other  sources  listed  in  the  Appendix. 

 

The health adjustment for non-tidal segments is equal the one minus the average percent change in loading for the three 
pollutants (nitrogen, phosphorus, and total suspended solids). 

𝐶ℎ𝑎𝑛𝑔𝑒  𝑖𝑛  𝐻𝑒𝑎𝑙𝑡ℎ  𝐼𝑛𝑑𝑒𝑥 =    [1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(%∆𝑁  𝑙𝑜𝑎𝑑𝑖𝑛𝑔,%∆𝑃  𝑙𝑜𝑎𝑑𝑖𝑛𝑔,%∆𝑇𝑆𝑆  𝑙𝑜𝑎𝑑𝑖𝑛𝑔)] 

Health in the Blueprint scenario, for example, becomes 

𝐻𝑒𝑎𝑙𝑡ℎ  𝑖𝑛  𝐵𝑙𝑢𝑒𝑝𝑟𝑖𝑛𝑡  𝑓𝑜𝑟  𝑅𝑖𝑣𝑒𝑟  𝑆𝑒𝑔𝑚𝑒𝑛𝑡  𝑘 
=  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝐻𝑒𝑎𝑙𝑡ℎ௞ × [1 − (𝐴𝑣𝑒𝑟𝑎𝑔𝑒  %∆  𝑖𝑛  𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡  𝑙𝑜𝑎𝑑𝑖𝑛𝑔  𝑓𝑜𝑟  𝐵𝑙𝑢𝑒𝑝𝑟𝑖𝑛𝑡)௞] 

For the sensitivity analysis (below), we consider the extent to which the magnitude of the factor before the average change 
in loading affects estimated benefits in each of the Blueprint and BAU scenarios. 

BENEFIT  ESTIMATES 
For the Baseline scenario, the total estimated natural capital value of the Chesapeake watershed, as represented by the 
eight selected ecosystem services, is $107.2 billion per year in 2013 dollars (see Table 5). Forests generate the majority of 
the ecosystem value in the region. This is due, in part, to the fact that the region is heavily forested—roughly 59% of the 
watershed area is still in forest. In addition, forests are particularly good at producing high-value services, like filtering 

                                                 
5 For tidal segments we do not adjust baseline health; rather we apply the ending health proxy for each of the two 2025 
scenarios.  Specifically, health of the tidal segments in the Blueprint scenario is assumed to be 1.00, given the 100 percent 
DO attainment goal of the TMDL.  For the Business-as-Usual scenario, attainment, and therefore health, are assumed to be 
remain unchanged from the baseline. 
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drinking water, reducing flooding, providing aesthetic benefits, and being excellent places for hunting, hiking, and other 
types of recreation. 

These Baseline estimates are generally in line with other studies of the value of natural capital in comparable regions. In a 
study of the Delaware estuary, an area about one tenth the size of the Chesapeake Bay watershed, Kauffmann (2011) 
estimated a total of $12.8 billion (adjusted to 2013 dollars) in ecosystem service value. If the Delaware watershed were 
increased in size to match the Chesapeake watershed, that estimate would come to nearly $137 billion in annual value. 
Similarly, Mates (2007) finds that the ecosystem service value of New Jersey is about $9.7 billion (adjusted to 2013 dollars). 
With the Chesapeake Bay watershed being about 8.2 times the size of New Jersey, that assessment would suggest that the 
ecosystem service value of the Chesapeake Bay watershed would provide approximately $131 billion per year. 

TABLE 5: SUMMARY OF ECOSYSTEM SERVICE VALUES FOR SEVEN LAND USES, BY SCENARIO 

 Baseline Blueprint Business-as-Usual 
Land Use ESV 

(millions of 
2013$) 

ESV 
(millions of 

2013$) 

Change from 
Baseline  

(%) 

Difference 
from BAU 

(%) 

ESV 
(millions of 

2013$) 

Change from 
Baseline  

(%) 

Agriculture  12,258   13,434  10% 23%  10,949  -11% 
Forest  73,960   86,406  17% 24%  69,639  -6% 
Open Water  16,721   24,301  45% 47%  16,549  -1% 
Urban Open  3,403   4,706  38% 26%  3,727  10% 
Urban Other  11   14  26% 18%  12  7% 
Wetland  356   364  2% 34%  270  -24% 
Other  467   508  9% 32%  386  -17% 
Total  $107,176   $129,732  21% 28%  $101,531  -5% 

 

Relative to personal income and gross regional product, the $107.2 billion is fairly modest, at least by the standard of 
Costanza et al. (1997). Costanza et al., using methods similar to those here but without the adjustment for ecosystem 
health,  estimated  that  the  world’s  ecosystems  produce  approximately  three  times  as  much  value  each  year  as  do  the  
world’s  economies.  For  this  study,  the  ratio  is  much  smaller, with the Baseline ecosystem service value being a small 
fraction (about 1/28) the size of the gross product of the states that contain the Chesapeake region and about one seventh 
the  size  of  total  labor  earnings  of  all  the  residents  of  the  watershed’s 207 counties (Bureau of Economic Analysis, US 
Department of Commerce, 2014a, 2014b)6.  

The  Bay’s  ecosystem  services  estimate  is  relatively  small,  based  on  these  comparisons,  for  a  couple  of  reasons.  First,  our  
method entails discounting ecosystem service values according to the land health measure. Second, we have estimated the 
value of only a subset of ecosystem services. The Delaware, New Jersey, and global studies, by contrast, considered all 
services and did not adjust for land health or productivity. Third, with respect to the Gross State Product comparison, the 
gross product of the six states and the District of Columbia includes the entire economic output for three states—New York, 
Delaware, and West Virginia—that contain less than one sixth of the watershed. 

Knowing the baseline value is important: it gives a sense of how much the natural systems of the Chesapeake Bay 
contribute  to  the  region’s  economy  on  an  annual  basis.  But  the  true  purpose  here  is  to  see  how  much  value  implementing  
the Blueprint could add to the natural capital value of the region. 

With full implementation of the Phase II WIPs and ultimate achievement of the pollutant loading and water-quality goals of 
the Clean Water Blueprint, the total value of the Chesapeake watershed is estimated at $129.7 billion annually (using these 
eight ecosystem services), which is an increase of more than $22.5 billion per year, or roughly 21%, over the Baseline. This 
                                                 
6 These measures are not comparable, of course. Gross regional product and total labor earnings are very different 
measures, and the six Bay states all contain significant lands outside, as well as within, the Chesapeake watershed. But the 
comparisons are useful for confirming that the estimates produced here are within the bounds of similar previous studies. 
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increase is largely due to improved habitat health associated with lower pollutant loads and higher water quality 
attainment. The remainder is due to some reallocation of land to biomes (e.g., forests) that are relatively more productive 
from an ecosystem services standpoint. It is not surprising given the distribution of land uses, but is still worth noting that 
the  majority  of  the  benefits  of  implementing  the  Blueprint  will  accrue  to  “upstream”  habitats,  rather than to the open 
water habitat that includes the Chesapeake Bay and its tidal rivers. 

TABLE 6: SUMMARY OF ECOSYSTEM SERVICE VALUE FOR EIGHT ECOSYSTEM SERVICES, BY SCENARIO 

 Baseline Blueprint Business-as-Usual 
Ecosystem Service ESV 

(millions of 
2013$) 

ESV 
(millions of 

2013$) 

Change from 
Baseline  

(%) 

Difference 
from BAU 

(%) 

ESV 
(millions of 

2013$) 

Change from 
Baseline  

(%) 

Aesthetic Value  38,446   47,407  23% 29%  36,653  -5% 
Climate Stability  5,498   6,508  18% 24%  5,237  -5% 
Food Production  12,129   13,313  10% 23%  10,839  -11% 
Air Pollution 
Treatment 

 3,471   4,061  17% 24%  3,271  -6% 

Recreation  3,071   4,099  33% 27%  3,227  5% 
Waste Treatment  12,155   16,470  35% 39%  11,827  -3% 
Water Regulation  12,386   14,448  17% 24%  11,634  -6% 
Water Supply  20,019   23,427  17% 24%  18,843  -6% 
Total  $107,176   $129,732  21% 28%  $101,531  -5% 

Under the Business as Usual scenario, by contrast, ecosystem service value could drop somewhat as land continues to be 
converted from more productive to less productive habitats (from forests to developed urban land, for example), and as 
land health and water quality continue to deteriorate. Based on the  Chesapeake  Bay  Program’s  projections of land use 
change and of pollution loads, we estimate that total ecosystem service value could drop by $5.6 billion per year (in 2013 
dollars) to $101.5 billion beginning in 2025. 

Finally, if we compare the Business as Usual result to the Blueprint projections, we estimate that the Blueprint would 
produce about $28.2 billion more each year in ecosystem service value than under the Business as Usual scenario.  Tables 5 
and 6 provide summary estimates by land use and by ecosystem service for the three scenarios.  

TABLE 7: SUMMARY OF ECOSYSTEM SERVICE VALUE FOR CHESAPEAKE BAY JURISDICTIONS, BY SCENARIO 

 Baseline Blueprint Business-as-Usual 
Jurisdiction ESV 

(millions of 
2013$) 

ESV 
(millions of 

2013$) 

Change from 
Baseline  

(%) 

Difference 
from BAU 

(%) 

ESV 
(millions of 

2013$) 

Change from 
Baseline  

(%) 
Virginia   41,195   49,540  20% 30%  38,006  -8% 
Pennsylvania   32,637   38,828  19% 26%  30,810  -6% 
Maryland   15,892   20,449  29% 34%  15,209  -4% 
New York   10,361   12,276  18% 18%  10,363  0% 
West Virginia   6,330   7,668  21% 19%  6,458  2% 
Delaware   735   941  28% 43%  659  -10% 
District of Columbia   25   29  15% 10%  27  5% 
Total  $107,176   $129,732  21% 28%  $101,531  -5% 

 

If one considers the distribution of ecosystem service value and the benefits of the Blueprint by state (Table 7, Appendix B), 
the results are, for the most part commensurate with the distribution of land area in the watershed among the states.  
Virginia, which has 33.9% of the acreage would receive 38.2% of the ecosystem service value under the Blueprint scenario 
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($49.5 billion). Pennsylvania, which has a bit more of the acreage (35.2%) would receive a bit less than 30% of the 
ecosystem service value ($38.8 billion). 

Comparing the Baseline and Blueprint scenario, the states would see gains of between 18 and 29%. (D.C. would gain about 
15%.) Differences in these relative gains are due to differences among the states in loadings and land use allocation 
stemming  from  the  states  and  the  District’s  respective  Watershed  Implementation  Plans. 

Ecosystem service value can also be 
explored for smaller geographic units, 
such as depicted in the map in Figure 8.  
This map shows the average value per 
acre of all eight ecosystem services 
under the Blueprint scenario by river 
segment.  Lighter shades of green 
indicate lower per-acre values. Being a 
function of the land use (land cover), 
health and per-acre values for different 
ecosystem services, total ecosystem 
service value does tend to be higher in 
river segments with more forest cover 
and those near the tidal Bay which, 
under the Blueprint scenario, is assumed 
to be functioning at full health. Other 
high-value river segments are in the main 
stem of the Bay, where the area is larger, 
and per-acre water supply, aesthetic, and 
recreational values are high. 

Sensitivity  Analysis  
As noted above, we assume a linear 
relationship between our indicators of 
ecosystem health. While certainly not 
correct for all relationships, such an 
assumption provides a straightforward 
substitute for the myriad possible 
functional forms that could represent the 
actual relationships. Even so, it is useful 
to consider how our estimates could 
differ under different assumptions. For 
the sake of simplicity, and because 
positing some subset of alternative 

assumptions would seem no less arbitrary, we consider what the estimated benefits of the Blueprint would be if we had 
over- or under-estimated by 50% the strength of the relationship between changes in sediment loading and 
health/productivity.7 

 

                                                 
7Such an analysis makes sense only for the terrestrial part of the watershed and not for the main stem of the Bay and its 
tidal tributaries. For those waters, health is either 100% for the Blueprint or unchanged for the BAU scenario, so there was 
no percentage change involved in the estimation itself. 

FIGURE 8: AVERAGE ANNUAL ECOSYSTEM SERVICE VALUE PER ACRE (IN 2013$) UNDER THE 
BLUEPRINT SCENARIO  
(This map does not show boundaries between river segments.) 
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In other words, we have asked how the estimates would change if each one percent decrease in pollutant load were to 
increase land health by only half a percent or, or alternatively, by one and a half percent. This modifies the equation above 
by  inserting  a  factor  of  0.5  and  then  1.5  for  “Z”  in  the  following  equation:  
 

𝐻𝑒𝑎𝑙𝑡ℎ  𝑖𝑛  𝐵𝑙𝑢𝑒𝑝𝑟𝑖𝑛𝑡  𝑓𝑜𝑟  𝑅𝑖𝑣𝑒𝑟  𝑆𝑒𝑔𝑚𝑒𝑛𝑡   
=  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝐻𝑒𝑎𝑙𝑡ℎ௞ × [1 − 𝒁(𝐴𝑣𝑒𝑟𝑎𝑔𝑒  %∆  𝑖𝑛  𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡  𝑙𝑜𝑎𝑑𝑖𝑛𝑔  𝑓𝑜𝑟  𝐵𝑙𝑢𝑒𝑝𝑟𝑖𝑛𝑡)௞] 
 

And  the  answer  is:  “not  very  much.”  For  the  Blueprint  scenario,  this procedure yields a range of estimates of total 
ecosystem service value of $122.2 to $136.7 billion, compared to the estimate above of $129.7 billion. In terms of the 
benefit or added ecosystem service value of the Blueprint relative to the baseline scenario, the range is $15 to $29.6 billion 
dollars, compared to the estimate of $22.6 billion. Thus even a major change in assumptions about the relationship 
between changes in pollutant loads and land health moves the ecosystem service value estimates by less than 6%. (The 
reason the change is a bit lopsided is that the model does not allow land health to exceed 100%, and for some river 
segments, multiplying the percent improvement by 1.5 pushed the resulting health index to that limit.) 

For the Business as Usual scenario, the range is tighter, from $99.1 to $104 billion, compared to our estimate of $101.5 
billion. The reason for the difference in the span of estimates between the BAU and Blueprint scenarios is that in the BAU 
scenario, about half of the river segments are projected to experience an increase in health anyway (due to BMPs already in 
place to reduce pollutant loading), and these gains tend to counteract the decreases projected for other segments. In the 
Blueprint scenario, by contrast, nearly all river segments would see a reduction in pollutant loads (and an increase in 
health), and very few of the gains in one segment are offset by losses in another. 

For both the Blueprint and BAU scenarios, this sensitivity analysis suggests that the assumption of a linear, one-to-one 
relationship between percent changes in pollutant loading and changes in ecosystem service productivity is fairly robust. 
Changes to the assumption do not change the absolute estimates by much and the changes certainly do not alter the result 
that the Blueprint would produce large annual increases in ecosystem service value relative to the Baseline and even larger 
increases relative to Business as Usual. 

Combined with other assumptions designed to make our estimates conservative (e.g., selecting minimum per-acre values 
and adjusting for land health in the first place), this result gives great confidence that the estimates are both reasonable 
and useful as low-end estimates for consideration of the overall, net benefit of the Blueprint. 

CONCLUSION 
Natural capital, as the basis for ecosystem service flows, is an important contributor to the Chesapeake  Bay  region’s  
economy and quality of life. As these study results suggest, implementing the Chesapeake Clean Water Blueprint could 
result  in  important  economic  benefits  relative  to  today’s  conditions and relative to conditions that would be expected to 
prevail if no further action is taken to reduce pollution of the Chesapeake Bay. These benefits accrue both due to changes in 
the pattern of land conversion in the region and due to adoption of best management practices that result in reductions of 
pollutant loads.  Both types of change would improve ecosystem service productivity and, assuming stable values for those 
services,  increases  in  the  economic  output  of  the  region’s  natural  capital. 

These benefits would naturally be distributed among diverse industries, individuals, and communities throughout and 
beyond the region. This look at aggregate value of implementing and achieving the Blueprint provides an important 
perspective on the overall economic contribution of the program.  It also gives us a benchmark against which to consider 
other economic aspects of achieving water quality improvement in the Chesapeake Bay, including the cost of implementing 
pollution-control measures. 
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APPENDIX  A:  PER-­‐ACRE  ECOSYSTEM  SERVICE  VALUE 
 

Candidate per-acre values for Land-Use and Ecosystem Service Combinations A 

(All values are in 2013 $) 

Land Use 
Ecosystem 
Service 

Min 

$/Acre 

Midpoint 

$/Acre 

Maximum 

$/Acre Note SourceD 

Agriculture Aesthetic 
Information 

$34.45 $61.13 $87.81 B (Bergstrom, Dillman, & 
Stoll, 1985) 

Agriculture Aesthetic 
Information 

$1,833.47 $1,833.47 $1,833.47 B (R. J. Johnston, Opaluch, 
Grigalunas, & Mazzotta, 
2001) 

Agriculture Food $2,381.76 $2,381.76 $2,381.76  (Kauffmann, Gerald et al., 
2011) 

Agriculture Recreation $2.13 $3.53 $4.94 B (Knoche & Lupi, 2007)  

Forest Aesthetic 
Information 

$1,831.47 $2,639.46 $3,447.46 B (Mazzotta, 1996) 

Forest Aesthetic 
Information 

$4,561.17 $4,561.17 $4,561.17 B (Opaluch, Grigalunas, 
Diamantedes, Mazzotta, & 
Johnston, 1999) 

Forest Climate 
Stability 

$318.60 $318.60 $318.60 B (Flores, Harrison-Cox, 
Wilson, & Batker, 2013) 

Forest Air Pollution 
Treatment 

$214.68 $214.68 $214.68  (Weber, 2007) 

Forest Recreation $2.74 $249.33 $495.92 B (Shafer, Carline, Guldin, & 
Cordell, 1993) 

Forest Recreation $36.54 $40.66 $44.78 B (Prince, n.d.) 

Forest Waste 
Treatment 

$261.54 $262.09 $262.63 B (Liu, 2006) 

Forest Waste 
Treatment 

$6,174.59 $6,174.59 $6,174.59 B (Liu, 2006) 

Forest Water 
Regulation 

$763.20 $763.20 $763.20  (Weber, 2007) 

Forest Water Supply $1,236.40 $1,236.40 $1,236.40  (Weber, 2007) 

Open water Aesthetic 
Information 

$3,848.73 $7,707.34 $11,565.96 B (Opaluch et al., 1999) 
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Candidate per-acre values for Land-Use and Ecosystem Service Combinations A 

(All values are in 2013 $) 

Land Use 
Ecosystem 
Service 

Min 

$/Acre 

Midpoint 

$/Acre 

Maximum 

$/Acre Note SourceD 

Open water Food $25.35 $82.37 $139.40 B (Armstrong, Rooper, & 
Gunderson, 2003).  

Open water Food $67.22 $67.22 $67.22 B (Judith T Kildow, Colgan, 
Kite-Powell, Shivendu, & 
Tindall, 2004) 

Open water Food $750.20 $750.20 $750.20 B (Kahn & Buerger, 1994) 

Open water Food $3,447.46 $5,548.26 $7,649.06 B (Mazzotta, 1996) 

Open water Food $29,174.11 $29,174.11 $29,174.11 B (Douglas Lipton, 2009) 

Open water Recreation $10.00 $51.73 $93.46 B (Whitehead, Hoban, & 
Clifford, 1997) 

Open water Recreation $108.33 $208.30 $308.27 B (Opaluch et al., 1999) 

Open water Recreation $152.88 $526.19 $899.51 B (Cordell & Bergstrom, 
1993) 

Open water Recreation $185.17 $301.05 $416.93 B (Opaluch et al., 1999) 

Open water Recreation $204.04 $328.99 $453.94 B (Judith T Kildow et al., 
2004) 

Open water Recreation $299.32 $364.77 $430.21 B (Mullen & Menz, 1985) 

Open water Recreation $437.31 $437.31 $437.31 B (Hicks, Haab, & Lipton, 
2004) 

Open water Recreation $652.38 $699.76 $747.14 B (Ribaudo & Epp, 1984) 

Open water Recreation $1,230.03 $1,790.48 $2,350.93 B (Hayes, Tyrrell, & 
Anderson, 1992) 

Open water Recreation $2,669.01 $2,763.21 $2,857.41 B (Burt & Brewer, 1971) 

Open water Recreation $4,087.27 $9,849.15 $15,611.04 B (Shafer et al., 1993) 

Open water Recreation $13,614.87 $13,614.87 $13,614.87 B (Mathews, Homans, & 
Easter, 2002) 

Open water Waste 
Treatment 

$3,609.10 $3,609.10 $3,609.10 B (Douglas Lipton, 2004)  

Open water Water Supply $81.35 $112.86 $144.37 B (Kenneth Mcconnell, n.d.) 
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Candidate per-acre values for Land-Use and Ecosystem Service Combinations A 

(All values are in 2013 $) 

Land Use 
Ecosystem 
Service 

Min 

$/Acre 

Midpoint 

$/Acre 

Maximum 

$/Acre Note SourceD 

Open water Water Supply $90.80 $90.80 $90.80 B (Nunes & Bergh, 2004) 

Open water Water Supply $639.10 $639.10 $639.10 B (Croke, Fabian, & 
Brenniman, 1986) 

Other Aesthetic 
Information 

$246.49 $448.71 $650.93 B (Pompe & Rinehart, 1995) 

Other Recreation $6,417.20 $7,204.21 $7,991.22 B (Kline & Swallow, 1998) 

Urban Open Aesthetic 
Information 

$447.46 $447.46 $447.46 B (R. J. Johnston et al., 2001) 

Urban Open Aesthetic 
Information 

$990.00 $1,145.60 $1,301.20 B (Qiu, Prato, & Boehrn, 
2006) 

Urban Open Aesthetic 
Information 

$1,699.71 $2,319.27 $2,938.82 B (Opaluch et al., 1999) 

Urban Open Climate 
Stability 

$414.15 $414.15 $414.15 C (Brenner Guillermo, 2007) 

Urban Open Climate 
Stability 

$1,116.28 $1,116.28 $1,116.28 B (Mcpherson, 1992) 

Urban Open Air Pollution 
Treatment 

$31.94 $31.94 $31.94 B (McPherson, Scott, & 
Simpson, 1998) 

Urban Open Air Pollution 
Treatment 

$189.28 $189.28 $189.28 B (Mcpherson, 1992) 

Urban Open Recreation $2,627.61 $2,627.61 $2,627.61 C (Brenner Guillermo, 2007) 

Urban Open Water 
Regulation 

$8.19 $8.19 $8.19 B (Mcpherson, 1992) 

Urban Open Water 
Regulation 

$136.02 $160.30 $184.58 B (The Trust for Public Land, 
2010)  

Urban Other Water 
Regulation 

$7.48 $7.48 $7.48 C (Brenner Guillermo, 2007) 

Wetland Aesthetic 
Information 

$454.35 $954.13 $1,453.92 B (Thibodeau & Ostro, 1981) 

Wetland Aesthetic 
Information 

$943.62 $1,227.72 $1,511.82 B (R. J. Johnston et al., 2001) 
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Candidate per-acre values for Land-Use and Ecosystem Service Combinations A 

(All values are in 2013 $) 

Land Use 
Ecosystem 
Service 

Min 

$/Acre 

Midpoint 

$/Acre 

Maximum 

$/Acre Note SourceD 

Wetland Climate 
Stability 

$61.68 $2,423.38 $4,785.07 B (Flores et al., 2013) 

Wetland Climate 
Stability 

$211.85 $211.85 $211.85 B (Hughes, 2006) 

Wetland Food $5.65 $356.71 $707.76 B (Sandra S. Batie, 1978) 

Wetland Food $58.93 $98.31 $137.69 B (Bell, 1989) 

Wetland Food $802.40 $802.40 $802.40 B (Hughes, 2006) 

Wetland Food $1,000.44 $1,000.44 $1,000.44 B (R. J. Johnston et al., 2001) 

Wetland Air Pollution 
Treatment 

$74.29 $85.37 $96.45 B (Jenkins, Murray, Kramer, 
& Faulkner, 2010) 

Wetland Recreation $79.42 $79.42 $79.42 B (Bergstrom, Stoll, Titre, & 
Wright, 1990) 

Wetland Recreation $107.55 $265.33 $423.11 B (Robert Costanza, Farber, & 
Maxwell, 1989) 

Wetland Recreation $120.74 $120.74 $120.74 B (Whitehead, Groothuis, 
Southwick, & Foster-Turley, 
2009) 

Wetland Recreation $152.75 $662.39 $1,172.02 B (Bell, 1989) 

Wetland Recreation $204.69 $204.69 $204.69 B (Kreutzwiser, 1981) 

Wetland Recreation $215.29 $932.29 $1,649.28 B (Raphael & Jaworski, 1979) 

Wetland Recreation $417.32 $417.32 $417.32 B (G. D. Anderson & 
Edwards, 1986) 

Wetland Recreation $568.66 $5,382.12 $10,195.58 B (Thibodeau & Ostro, 1981) 

Wetland Recreation $638.21 $2,387.46 $4,136.71 B (Whitehead, 1990) 

Wetland Recreation $1,024.42 $1,024.42 $1,024.42 B (Creel & Loomis, 1992) 

Wetland Waste 
Treatment 

$65.95 $3,138.39 $6,210.84 B (Breaux, Farber, & Day, 
1995) 

Wetland Waste 
Treatment 

$542.22 $542.22 $542.22 B (Jenkins et al., 2010) 
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Candidate per-acre values for Land-Use and Ecosystem Service Combinations A 

(All values are in 2013 $) 

Land Use 
Ecosystem 
Service 

Min 

$/Acre 

Midpoint 

$/Acre 

Maximum 

$/Acre Note SourceD 

Wetland Waste 
Treatment 

$4,484.94 $4,484.94 $4,484.94 B (Thibodeau & Ostro, 1981) 

Wetland Water 
Regulation 

$1,271.60 $1,271.60 $1,271.60  (Weber, 2007) 

Wetland Water Supply $612.83 $612.83 $612.83 B (Creel & Loomis, 1992) 

Wetland Water Supply $18,307.22 $18,307.22 $18,307.22 B (Thibodeau & Ostro, 1981) 

Notes: 

A. From this list of candidate values, two options for valuation were created: the minimum of the minimum value for all 
studies for which an estimate is available for a give land use-ecosystem service pair; and the average of the midpoints 
of estimates from those studies. Ultimately, and for the sake of providing conservative estimates, the minimum of the 
minimum values was used for this study. Details are provide in this table to provide a sense of the range of values 
available in the literature. 

B. These values were obtained via contract for a custom data pull from Earth Economics Ecosystem Valuation Toolkit in 
March 2014. Earth Economics selected options from thousands of studies based on applicability to the Chesapeake Bay 
Watershed. http://esvaluation.org/. 

C. Values selected from the TEEB (The Economics of Ecosystems and Biodiversity) Valuation Database (Van der Ploeg et 
al., 2010). 

D. Full  references  are  included  under  “Works  Cited,”  above. 

 

http://esvaluation.org/


 

 

APPENDIX  B:  BENEFIT  VALUES  FOR  CHESAPEAKE  BAY  JURISDICTIONS  BY  ECOSYSTEM  
SERVICE  AND  LAND  TYPE  8 

                                                 
8 Grand totals for the three scenarios may differ slightly from Tables 5-7 due to rounding. 

Baseline Scenario (2013 
$ in millions)       
Ecosystem 
Service   DC   DE   MD   NY    PA  VA   WV  
Aesthetic 
Information  

                         
8,250  

                    
179,692  

                      
6,170,885  

                      
3,535,903  

                    
11,037,658  

                    
15,314,725  

                    
2,198,665  

Climate 
Stability  

                         
1,670  

                      
35,267  

                          
483,557  

                          
628,258  

                      
1,966,361  

                      
1,997,954  

                        
385,460  

Food                              
0.03  

                    
235,911  

                      
1,741,515  

                      
1,265,001  

                      
4,130,274  

                      
4,036,635  

                        
719,582  

Air Pollution 
Treatment  

                            
0.36  

                      
19,690  

                          
289,646  

                          
400,634  

                      
1,242,712  

                      
1,266,390  

                        
251,829  

Recreation                           
8,040  

                      
55,476  

                          
605,087  

                          
255,730  

                          
964,192  

                      
1,082,933  

                          
99,523  

Waste 
Treatment  

                         
4,756  

                      
28,250  

                      
3,772,701  

                          
563,327  

                      
1,797,949  

                      
5,651,129  

                        
337,322  

Water 
Regulation  

                         
1,091  

                      
70,108  

                      
1,097,459  

                      
1,419,439  

                      
4,394,382  

                      
4,511,545  

                        
892,300  

Water 
Supply  

                         
1,615  

                    
110,768  

                      
1,731,435  

                      
2,292,901  

                      
7,103,755  

                      
7,333,201  

                    
1,445,164  

Total                         
25,422  

                    
735,162  

                    
15,892,285  

                    
10,361,193  

                    
32,637,283  

                    
41,194,512  

                    
6,329,845  

        
Blueprint Scenario (2013 
$ in millions)        
Ecosystem 
Services DC DE MD NY PA VA WV 
Aesthetic 
Information 10,110 247,430 8,272,339 4,268,957 13,057,363 18,932,293 2,618,193 
Climate 
Stability 1,940 50,753 566,830 759,832 2,338,966 2,325,674 464,454 
Food 0.03 238,828 1,824,795 1,285,065 5,003,963 4,014,719 945,160 
Air Pollution 
Treatment 0.54 27,348 332,845 484,297 1,468,013 1,448,296 299,206 
Recreation 7,312 89,211 760,207 311,660 1,258,110 1,504,861 167,488 
Waste 
Treatment 5,245 37,470 5,438,331 679,075 2,130,704 7,778,194 401,397 
Water 
Regulation 1,813 96,929 1,246,646 1,715,802 5,187,391 5,141,342 1,058,259 
Water 
Supply 2,764 152,937 2,007,026 2,771,498 8,383,866 8,394,762 1,713,818 
Total 29,185 940,906 20,449,019 12,276,186 38,828,376 49,540,141 7,667,975 
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Baseline Scenario (2013 $ 
in millions)       
Land Use DC DE MD NY PA  VA WV 
Agriculture 0 239,508 1,743,352 1,284,039 4,191,535 4,069,002 730,606 
Forest 5,703 410,101 6,006,969 8,567,205 26,549,705 27,013,186 5,407,538 
Open Water 9,149 10,407 7,194,310 165,747 623,720 8,651,151 66,681 
Other 0.04 11,325 177,651 6,187 67,890 192,316 11,947 
Urban Open 10,570 59,043 554,715 326,438 1,179,201 1,159,900 113,072 
Urban Other 0.08 0.04 2,808 0.50 3,398 3,864 0.36 
Wetland 0.008 4,778 212,480 11,576 21,834 105,093 0.17 
Total 25,422 735,162 15,892,285 10,361,193 32,637,283 41,194,512 6,329,845 

        
Blueprint Scenario (2013 $ 
in millions)        
Land Use DC DE MD NY PA VA WV 
Agriculture 0 242,473 1,816,394 1,304,101 5,078,183 4,033,125 959,596 
Forest 9,768 566,183 6,902,187 10,355,417 31,331,768 30,828,530 6,412,810 
Open Water 9,778 11,141 10,583,840 196,673 754,680 12,662,977 81,957 
Other 0.18 15,255 190,840 7,491 83,639 193,377 17,031 
Urban Open 9,639 99,060 739,189 398,298 1,548,301 1,715,263 196,580 
Urban Other 0.08 0.06 3,836 0.58 4,318 4,683 0.42 
Wetland 0.02 6,794 212,733 14,205 27,487 102,186 0.11 
Total 29,185 940,906 20,449,019 12,276,186 38,828,376 49,540,141 7,667,975 

        
Business As Usual 
Scenario (2013 $)       
Ecosystem 
Service DC DE MD NY PA VA WV 
Aesthetic 
Information 8,544 168,666 6,001,985 3,606,664 10,357,382 14,294,147 2,215,626 
Climate 
Stability 1,801 34,765 466,061 641,729 1,853,061 1,848,862 390,796 
Food 0.03 178,259 1,479,856 1,077,530 4,001,666 3,316,441 785,606 
Air Pollution 
Treatment 0.38 18,459 272,460 409,080 1,165,294 1,152,368 253,301 
Recreation 8,725 63,921 622,630 262,713 971,219 1,174,948 122,884 
Waste 
Treatment 4,791 26,337 3,728,580 574,454 1,686,015 5,466,249 340,577 
Water 
Regulation 1,099 65,316 1,013,417 1,449,440 4,118,623 4,089,290 896,657 
Water 
Supply 1,684 103,003 1,624,506 2,341,133 6,656,691 6,663,602 1,452,093 
Total 26,644 658,726 15,209,494 10,362,741 30,809,951 38,005,907 6,457,540 
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Business as Usual Scenario 
(2013 $)       
Land Use DC DE MD NY PA VA  WV 
Agriculture 0 180,973 1,477,960 1,093,631 4,061,077 3,338,129 797,478 
Forest 5,978 381,142 5,657,415 8,747,204 24,877,652 24,536,470 5,433,512 
Open Water 9,191 9,830 7,146,112 167,680 587,098 8,558,438 70,550 
Other 0.04 10,334 146,250 6,417 64,571 145,578 12,656 
Urban Open 11,475 71,768 621,842 335,563 1,194,488 1,348,171 143,343 
Urban Other 0.10 0.04 3,302 0.49 3,366 4,120 0.43 
Wetland 0 4,679 156,613 12,246 21,699 75,001 0.070 
Total 26,644 658,726 15,209,494 10,362,741 30,809,951 38,005,907 6,457,540 
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